ICRC 2022

Erik DeBenedictis and Elie Track presented at the IEEE International Conference on Rebooting Computing (ICRC 2022) 8-9 December 2022 in San Francisco, CA, USA and Virtual.

The paper has been published as:
DeBenedictis, Erik P., and Elie K. Track. “Rebooting Quantum Computing.” 2022 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 2022. DOI: 10.1109/ICRC57508.2022.00010.

Accepted Manuscript:


This is the PowerPoint deck as presented in pdf. This is followed by the source .pptx file (the file was created in .ppt and saved as .pptx).

And this is the slide deck in notes mode, minus one slide.

References from the paper

For convenience, the references from the paper appear below with hyperlinks where available. There is a second open link in some cases.

  1. Neven, Harmut, “Quantum AI Update,” Google Symposium 2022, offset 15:00. (note: this link requires registration).
  2. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing,
  3. Pellerano, Stefano, et al. “Cryogenic CMOS for Qubit Control and Readout.” 2022 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2022. DOI:
  4. Frank, David J., et al. “A Cryo-CMOS Low-Power Semi-Autonomous Qubit State Controller in 14nm FinFET Technology.” 2022 IEEE International Solid-State Circuits Conference (ISSCC). Vol. 65. IEEE, 2022. DOI:
  5. Fellous-Asiani, Marco. The resource cost of large scale quantum computing. Diss. Université Grenoble Alpes 2022.
  6. Fellous-Asiani, Marco, et al. “Optimizing resource efficiencies for scalable full-stack quantum computers.” arXiv preprint arXiv:2209.05469 (2022).
  7. Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008
  8. Feynman, Richard P. “Simulating physics with computers.” International Journal of theoretical physics 21.6/7 (1982).
  9. Fredkin, Edward, and Tommaso Toffoli. “Conservative logic.” International Journal of theoretical physics 21.3-4 (1982): 219-253.
  10. Younis, Saed G. Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic. Diss. Massachusetts Institute of Technology, 1994.
  11. Lim, Joonho, Dong-Gyu Kim, and Soo-Ik Chae. “nMOS reversible energy recovery logic for ultra-low-energy applications.” IEEE Journal of Solid-State Circuits 35.6 (2000): 865-875. DOI:
  12. Pauka, S. J., et al. “A cryogenic CMOS chip for generating control signals for multiple qubits.” Nature Electronics 4.1 (2021): 64-70. DOI:
  13. DeBenedictis, Erik P. “Adiabatic circuits for quantum computer control.” 2020 International Conference on Rebooting Computing (ICRC). IEEE, 2020.
  14. DeBenedictis, Erik P. “Classical Reversible Logic Circuits for Quantum Computer Control,” Zettaflops, LLC Technical Report ZF010.
  15. Hornibrook, J. M., et al. “Cryogenic control architecture for large-scale quantum computing.” Physical Review Applied 3.2 (2015): 024010 DOI:
  16. DeBenedictis, Erik P. Managing Energy in Computation with Reversible Circuits. Patent Application No. WO2022197556. September, 2022.
  17. Sirois, Adam J., et al. “Josephson microwave sources applied to quantum information systems.” IEEE Transactions on Quantum Engineering 1 (2020): 1-7. DOI:
  18. Jokar, Mohammad Reza, et al. “DigiQ: A Scalable Digital Controller for Quantum Computers Using SFQ Logic.” 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2022. DOI: