## Rebooting Quantum Computing

International Conference on Rebooting Computing December 9, 2022

Erik P. DeBenedictis, Zettaflops, LLC Elie K. Track, Hypres, Inc.



1

#### **Technical Problem: Excessive Power Bill**



- Scale up of superconducting quantum computers is encountering technological challenges
  - Google's milestone 6 is a million qubits in a structure that looks bigger than 10 meters of A380 fuselage (possible hidden slide)
  - IBM's roadmap mentions "millions of qubits"
  - But more is needed: a well-known quantum factoring paper calls for 20 million raw qubits
- Problem 1: No technology can run a million cables into a cryostat
- Problem 2: Excessive power bill for cryo-CMOS controllers at 4 K
  - IBM and Intel have cryo-CMOS controllers at 25 mW/qubit 4 K
  - Multiplying by a million and then 200× cryocooler overhead gives 5 MW
  - At \$1/watt-year,<sup>†</sup> the power bill will be \$5M/year for a million qubits and \$100M/year for 20 million qubits
- <u>Rebooting Computing could hold conferences and publish results</u> <u>contributing to a solution</u>

### Rebooting Computing Becomes an Infinite Loop





- Previously, physics informed engineers of the temperatures
- In future, temperatures will be selected by an optimization algorithm

### Hybrids and Technology Teamwork



- Rebooting computing was organized like a horse race
  - Horses were named New Switch, Reversible, SFQ, ... (see hidden slide)
  - Horse with best performance parameters, get research funding by reduction in budget for the losing horses; teaming would not help
- Different approach in production (Smartphones)
  - Horses are CMOS, DRAM, Flash, RF, etc.
  - Smartphone manufacturer wants a team of horses that can expand the total money supply
- Quantum computers now have a goal, so Rebooting Computing could use the teaming approach

### Example: Semiconductor-Superconductor Hybrid

- Horse 1: You can make a transistor chip
  - And people have done this
  - For detail, see ②; transistor are small
- Horse 2: You can then evaporatively deposit JJ/SFQ circuits
  - Would not look like this; layers reversed
- However, there is a size disparity
  - CMOS excels on density (size)
  - JJ/SFQ circuits are intrinsically fast and low power
- Can we use these horses in a team?



Weste

# Semi- Superconductor Hybrid for Waveform Playback

Design concept

- Store data in transistors, which are small but slow
- Process data in JJs, which have low dissipation even at high speed
- Benefit: do not need single technology to be best at everything
- Cost: Need to design the interface
- But will need a complete set functions



#### Quantum Roadmap



We now have a basis for an ITRS/IRDS-like roadmap

• Start with 25 mW/qubit and use framework to quantify how much each advance reduces the power of a quantum computer

| Description                            | 2022   | 2025   | 2030  | 2035    | units |
|----------------------------------------|--------|--------|-------|---------|-------|
| General factors                        |        |        |       |         |       |
| Cryo-CMOS baseline power/qubit at 4 K  | 25     | 25     | 25    | 25      | mW    |
| Cooling overhead to 4 K, large scale   | 200    | 200    | 200   | 200     | W/W   |
| Cryo-CMOS (not including this work)    |        |        |       |         |       |
| Process technology factor              |        |        |       |         |       |
| Example: 22FFL to GAA 3 nm             |        |        | 5 (2) | 5       | ×     |
| Design optimization factor             |        |        |       |         |       |
| DAC, DSP improvements                  |        |        | 10    | 10      | ×     |
| Rearchitect                            |        |        | 9     | 5       | ×     |
| Power per qubit @ 4 K                  | 25,000 | 25,000 | 500   | 100     | μW    |
| Million qubit control system power     | 5,000  | 5,000  | 100   | 20      | kW    |
| Reversible logic (addon for this work) |        |        |       |         |       |
| Circuit improvement over cryo-CMOS     | 1      | 25 (4) | 50    | 100     | ×     |
| Power per qubit @ 4 K                  | 25,000 | 1,000  | 10    | 1       | μW    |
| Million-qubit control system power     | 5,000  | 200    | 2     | 0.2 (5) | kW    |

Summary

Technical material in this talk

- There is now a quantitative basis for roadmaps and benchmarks
  - Power prediction framework: Marco Fellous Asiani's thesis
  - Qubit controller chips: Intel, IBM, Microsoft; SeeQC
  - Quantum computers of growing size: Google, IBM, etc.
  - Source of new component technologies
    - Zettaflops, Hypres (us)
    - Rebooting Computing

Potential follow on activity

- IEEE has could support brainstorm type activity, which could be ICRC
- The prediction framework could become the basis of a roadmap like ITRS/IRDS
- Benchmarks could be created for subfunctions
  - Chip area and dissipation for the hybrid waveform playback using a reference waveform



# Leave Behinds and Additional Information



The submitted paper and this PowerPoint (with hidden slides and references) are posted at

https://www.zettaflops.org/ICRC-22

It is a WordPress site, so you can go to zettaflops.org and use the site's navigation

Zettaflops, LLC and Hypres have applicable technology