
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Classical Reversible Logic Circuits for
Quantum Computer Control

Zettaflops, LLC Technical Report ZF010

Erik P. DeBenedictis
Zettaflops, LLC

1415 Canyon Rim Dr., NE
Albuquerque, NM 87112, USA
erikdebenedictis@gmail.com

March 28, 2022

Abstract—This document presents an approach for scaling up
quantum computers that makes use of novel principles for both
the quantum and classical portions. For qubits requiring a
cryogenic environment, the heat dissipation of the collocated
classical portion is expected to limit scale up. This document
adapts and applies classical reversible logic, which is more
energy efficient than CMOS of equivalent function when
operated in a cryogenic environment. While the advantages of
reversible logic have been demonstrated in other contexts, this
document makes novel adaptations for cryogenic operation at
relevant speeds and describes a method of turning quantum
algorithms into the cryogenic processor component of a quantum
computer architecture. The simulation file with the key circuits
has been released as open source, which can be used to generate
plots that illustrate the key advances. These ideas can enable
more capable quantum computers in addition to answering the
question of whether reversible logic would enable more capable
computers in general. The difference from past work being that
the result is achieved for quantum computers where the original
expectation had been microprocessors.

Keywords— adiabatic computing; reversible computing;
reversible logic; Adiabatic CMOS; PL/AL architecture; quantum
computer; CMOS; cryo CMOS

I. INTRODUCTION

This document shows how to implement the cryogenic portion
of a quantum computer’s classical control system using an
adaptation of reversible logic, potentially reducing dissipation
in the cryostat and allowing greater quantum computer scale
up.

Quantum and reversible computing were invented in the
1980s and 1990s as the first two discoveries in a new field
called the physics of computation [1, 2]. After 35 years of
physics research, quantum computers demonstrated quantum
supremacy [3] and created a societal expectation that quantum
computers would become practical.

Reversible computing, also called reversible logic, offers an
energy efficiency improvement over CMOS due to energy
recycling, as illustrated by the circuit simulations in Fig. 1. The
curves show cumulative electrical energy flow in and out of

chips of comparable behaviors implemented with (a)
Complementary Metal Oxide Semiconductor (CMOS) and (b)
reversible logic built from the same transistors. Since all
energy entering a CMOS chip leaves as heat, the CMOS curve
rises monotonically. However, the reversible circuit uses
energy for a short time and then transfers most of it back to the
power supply for recycling, dissipating only a second order
portion in the cryostat.

Starting in the 1990s, several research groups designed and
tested chips fabricated using CMOS fabrication processes but
using reversible logic circuits [4, 5, 6, 7, 8, 9, 10]. The new
circuits were applied to the microprocessor architecture,
creating reversible microprocessors [5, 7, 11]. Progress slowed

Fig. 1. Summary of the energy efficiency advance. (a) Cumulative
energy drawn from a power supply for a CMOS circuit driving a 10
V square wave to a 100 pF capacitor. The curve rises by CV2 each
time the signal transitions from 0 to 1. (b) A reversible circuit
driving the same voltage to the same size capacitor—plus a pattern
generator representative of a quantum circuit (note the pattern
causes pulses to be present or absent). Each transition from 0 to 1
draws ½CV2 (plus a small overhead) from the power supply, but the
transition from 1 to 0 gives back ½CV2 (minus a small overhead).
Curve (b) rises, but more slowly, representing higher energy
efficiency.

(a) CMOS driving
100 pF load

(b) Reversible PL/AL controller
driving 100 pF load

J

0 5e-4 1e-3

when it became apparent that the resulting microprocessors
would have to run slowly to achieve high energy efficiency and
an essential component, the energy recycling power supply,
would not be efficient enough without a technology
breakthrough.

Quantum computers are distinct from classical computers,
yet now well enough understood to be scaled up. Quantum
computer scale up is limited in part by excessive dissipation in
the cryostat, at least for some qubit types [12, Fig. 4e]. This
poses the question of whether the energy efficiency approach
in reversible logic could adapted to quantum computers to
facilitate scale up. If reversible logic is to be a solution, it
would have to avoid the obstacles that thwarted reversible
microprocessors.

Qubit operations are slow, providing headroom on the
speed issue. It has now become apparent that large-scale
quantum computers will need to use quantum error correction
[13]. Quantum error correction requires frequent quantum
measurements, which are about 1,000× slower than CMOS
gate operations and become the rate-limiting operation of a
quantum computer. While slowing down a microprocessor
clock by 1,000× cuts system throughput by the same factor, a
classical control system running 1,000× slower (1 MHz) than a
microprocessor (1 GHz) would naturally bridge the speed
differential between quantum and classical operations and
could be acceptable or even ideal.

While the elusive energy recycling power supply is
essential for room temperature reversible logic, its role in the
powertrain can be filled by a cryogenic refrigerator [14, 15],
given that one already present for another reason.

A physical demonstration would be an appropriate initial
step towards validating reversible logic for the role just
discussed—yet these demonstrations occurred inadvertently in
the 1990s [9]. While the reversible logic test chips mentioned
above did not make a compelling argument for further
development of a reversible microprocessor, application to
quantum computers would require a reversible logic circuit in
conjunction with a cryogenic refrigerator, not an energy
recycling power supply. It turns out that the test chips were
exactly what was needed to validate the quantum computer use
case, even though the people involved did not realize it at the
time.

The next step, which is the purpose of this document, is to
devise a strategy for building a quantum computer that allows
the energy efficiency of cryogenic reversible logic to carry
through to the quantum computer as a whole and allow greater
scale up.

This document will show a system design that includes a
standard computer at room temperature plus a cryogenic
processor based on reversible logic. These components would
replace similarly named components in the PL/AL architecture
[16], a known quantum architecture.

This document will show how to replace the function of the
standard computer and the cryogenic processor using a new
approach that puts the complex and otherwise energy
consuming functions into the standard computer at room
temperature so the remaining functions performed in the

cryogenic processor can use known or readily demonstrable
reversible logic circuits with low dissipation.

Using quantum error detection and correction as an
example, this document shows how the ideas described above
can be applied to any quantum algorithm. In summary, the
quantum algorithm is first expressed as a flowchart. The boxes
and diamonds of the flowchart are then replaced by reversible
logic circuit schematics, with the arcs in the flowchart forming
connections between the circuits. This yields a netlist that
could be fed into a Computer Aided Design (CAD) tool and
fabricated to create an integrated circuit.

The circuit simulated in Fig. 1b is actually the central
portion of a classical control system of a quantum computer, so
reducing dissipation in the cryostat could permit more qubits
and hence scale up. Shor’s quantum factoring algorithm [17]
can factor a number in fewer steps than a conventional
computer. This document builds on Shor’s algorithm, or any
quantum algorithm, by devising a classical reversible logic
circuit, which is essentially an algorithm, for controlling the
quantum computer with less dissipation than CMOS.
Combining these two ideas would allow a quantum computer
to run algorithms with both fewer steps and less dissipation.

At a higher level, this document extends Landauer’s
concept of a “minimum heat dissipation typically on the order
of kT for each irreversible operation” [18] to a system with
multiple regions at different temperatures. This document ties
Landauer’s physical concept to computer architecture by
showing how to allocate calculations of different physical
complexities, such as reversible and irreversible, to regions at
different temperatures, and where those temperatures dictate
different hardware options, in order to optimize the design.

To foreshadow the result, the cryogenic processor is a data
decompressor, similar to image decompressors in web
browsers. The data decompressor takes on a role similar to a
cache in a classical computing system. Neither a cache nor a
data decompresser “compute,” but the roles of both are to
alleviate an obstacle to scale up, specifically latency and heat.
The phrase “reversible logic” also turns out to be a bit of an
overstatement because the structure is almost entirely
comprised of shift registers. Non-trivial reversible logic gates
only appear in one place in this document, and it is just an
optimization.

II. THE SUBCIRCUIT SEQUENCE GRAPH OR FLOWCHART

The synthesis process will be illustrated for a simple algorithm,
yet can be applied to any algorithm that expands into a
quantum gate sequence.

Fig. 2 is an error detection and correction algorithm for the
5-bit error correcting code designated [[5, 1, 3]]. In rough
equivalence to a 5-bit byte in a classical computer, a quantum
computer supporting the [[5, 1, 3]] code would perform
operations on groups of 5-7 qubits at once.

The top-level structure of the algorithm for checking a 5-bit
codeword for an error and correcting it if found [13, p. 2 Error-
correction procedure] is:

if (SXZZXI) fix_error (1)

else if (SIXZZX) fix_error

else if (SXIXZZ) fix_error

else if (SZXIXZ) fix_error,

where SXZZXI performs verification or a syndrome check
corresponding to the pattern XZZXI, returning true if there is
error. The three other patterns like XZZXI are circular rotations
of the symbols.

For completeness, other algorithms require various forms
of a looping construct, which would have the textual
representation:

while (Mcontinue) iteration, (2)

which repeats iteration while Mcontinue is true.

This section will show how to create the graph in Fig. 2a
that represents all the qubit gate sequences that algorithm (1)
could possibly generate. The graph will be translated into a
hardware schematic later in this document.

Fig. 2a illustrates the range of primitive operations required
for quantum error correction. The double-outlined block in the
upper left represents the circuit in Fig. 2b that verifies the first
of four check qubits, but does so in a way that also detects
errors in the gates that perform the verification. This circuit has
a typical sequence of state preparation, quantum gates, and
quantum measurements.

The process then undergoes what a classical computer
would call a conditional branch using the module in Fig. 2d. If
qubit measurements (M) report no error, the process continues
by verifying the second check pattern, and so on. If all four
checks along the top row succeed, the error check completes
having found no errors.

When one of the qubit measurements reveals an error, all
four check qubits are verified by four single-outlined blocks
shown in Fig. 2c.

The information from all the measurements together will
yield up to three qubit corrections designated Ui, Uj, and Uk,
where each U is one of the four single-qubit gate operations X,
Y, Z, or I (I means no correction) and i, j, and k identify which
qubit receives the correction.

The discussion above motivates what is called a subcircuit
sequence graph in this document, which is an intermediate
form in the synthesis process:

 The graph is based on, at minimum, a set of
universal quantum gates plus qubit reset and
measurement. Beyond the minimum, the set may
include separate operations for each input of a
two-qubit gate (such as “CNOT control” and
“CNOT target”) and composite operations (such
as “Hadamard, one input of control-Z, Hadamard).

 Boxes of functional type, using the terminology in
[19] containing quantum subcircuits of the above.

 Boxes of functional type containing parameterized
single-qubit gate operations Ui where the
operation type U and qubit identity i are

determined by measurements. While not discussed
further in this document, the approach is for the
subcircuit graph in Fig. 2a, which was described
as applying to 5-7 qubits at a time, to split into
graphs for each qubit, yielding separate decisions
for rotations by X and Z for each qubit.

 Diamonds of predictive type, using the
terminology in [19], that control which of several
operations is to be carried out next based on the
results of measurements.

 A subcircuit graph comprises boxes and diamonds
connected by arcs, which is commonly called a
flowchart. The flowchart is equivalent to a textual
representation containing if and while decision
statements.

Ref. [19] demonstrates equivalence between a flowchart and a
Turing machine, yet this equivalence requires a stack. The
subcircuit sequence graph in Fig. 2 deliberately excludes the
decisions that control the diamonds. This is so the room-
temperature computer can provide the functionality of a stack,
hence making the subcircuit sequence graph extremely general.

A. The Prime-line/address-line architecture

Fig. 3 illustrates the “Prime-Line/Address-Line architecture” or
“PL/AL architecture” proposed for large-scale quantum
computing [16, 20], where the cryogenic processor in Fig. 3a is
the main topic of this document. The architecture is structured

Fig. 2. Overall [[5, 1, 3]] correction algorithm is composed of (a) a
subcircuit graph, (b) (c) syndrome extraction subcircuits, (d)
diamond or crossover, and (e) correction module.

(a) [[5, 1, 3]] error detection and correction with flags:

XZZXI IXZZX XIXZZ ZXIXZ

XZZXI

XZZXI XZZXI

U1U2U3 Z, Y, or Z on
qubit n

= =

= =

(d) Diamond for decision,
implemented by a crossover:

(c) Circuit without flags: (b) Circuit with flag qubits:

(e) Correction:

D

U1U2U3

  


IXZZX XIXZZ ZXIXZ

Energy/op vs. freq., TSMC 0.18, CMO S vs. 2LAL

1.E-19

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E+031.E+041.E+051.E+061.E+071.E+081.E+09

Frequency, Hz

D
is

si
pa

ti
on

 p
er

 n
F

E
T

 p
er

 c
lo

ck
, J

 . Data from Krishna Natarajan

 CMOS

Reversible circuit 

 Top speed

Fig. 4. Reversible transistor shift register. CMOS is  is flat at
½CV2, reversible circuit  has slope 1 due to 1/ adiabatic
scaling. The lines intersect at , about the top speed of CMOS.
Both CMOS and reversible circuits slope upwards at low
frequencies due to leakage.

like a player piano plus a semi-independent qubit readout
capability.

The task of Fig. 3 is to expose each qubit to an analog
waveform. The switch matrix in Fig. 3b fills the role of a piano
keyboard for each qubit, combining analog prime-line
waveforms in Fig. 3c, each equivalent to a piano note, into a
time sequence defined by the cryogenic processor in Fig. 3a,
equivalent to the moving paper roll controlling a player piano.

Just as integers are composed of prime factors, Fig. 3c
shows three representative prime-line waveforms, collectively
called a prime-line bus [16]. The analog waveforms define
operations, such as X, H, and control-Z, which are able to
specify all possible behaviors of the qubits if combined in an
appropriate time sequence.

Currently, qubit readout involves complex signal
processing that has only been demonstrated at room
temperature, represented in Fig. 3d and e [21]. Similarly to
[22], this document incorporates qubit readout through a
subsystem that interfaces to room temperature equipment
independently, returning information to the cryogenic
processor in Fig. 3a.

In analogy to a jukebox, the standard computer in Fig. 3e
observes the readout of qubit state and selects which roll of
music to play at a given time. The standard computer also
executes the classical portion of an overall quantum
application.

The ideas in this document anticipate that designers will
choose the prime-line waveforms in Fig. 3c in part to reduce
dissipation in the cryostat. The prime-line waveforms should

comprise a universal set of quantum gates, but
there are many universal gate sets. Some
quantum computer research groups consider
many universal quantum gate sets and choose
the one that has the best speed or accuracy for
a given set of applications. This document
goes a step further by allowing the designer to
choose prime-line waveforms to reduce the
speed of the cryogenic processor in Fig. 3a,
thus reducing dissipation through the classical
adiabatic principle.

III. REVERSIBLE CIRCUIT SYNTHESIS

This section describes reversible transistor
circuits to the minimum level of detail
required to understand the body of this
document. Appendix A offers more detail.

Reversible transistor circuits are
classically adiabatic, meaning a circuit’s
dissipation is proportional to clock rate – until
the dissipation is so low that static dissipation
dominates. The adiabatic circuits in this
document use AC power-clocks with linear
voltage ramps of duration , so adiabatic
behavior is equivalent to the presence of a 1/
term in the circuit equations for dissipation.

Circuit simulations in Fig. 4 compare
energy per operation of a CMOS shift register with a reversible
logic shift register created with the same transistors.

The energy per operation of the CMOS circuit  is ½CV2

“address-line bus” [16]

(d) Measure-
ment interface/ readout bus [16]

(a) Cryogenic
processor:
FPGA [16],
Microcoded
Control
Engine (MCE)
[22], or
reversible
structure from
this document

(e) Signal
processing
apparatus and
standard
computer at
room
temperature

(b) “switch matrix” [16]

Fig. 3. “PL/AL architecture” [16] as redrawn for this document. (a) A cryogenic processor
chooses which gate to apply to each qubit on each time step, the nature of this processor is
the main topic of this document. (b) A switch matrix gates one prime line waveform to
each qubit on each time step, where (c) the waveforms are generated at room temperature.
(d) Measurement is performed by exposing qubits to waveforms generated at room
temperature and routing the reflected signal back to room temperature. (e) At room
temperature, signal processing apparatus processes the reflected signals, passing the digital
measurement results to a standard room-temperature computer for management of high-
level activities. As shown by the circular arrow, the overall information flow is
counterclockwise.

(c) Room
temperature
prime-line
waveform
generators [16]

irrespective of clock rate.

However, the energy per operation of the reversible circuit
 includes a downward line of slope -1 on a log-log scale.

The straight lines above have slope 0 and 1, so they
intersect. If the circuits have similar functions, the transistors
are the same, and the supply voltages are the same, the two
lines will intersect at about the top speed of CMOS. This
implies that the energy advantage of the reversible circuit over
CMOS is equal to the amount of slowdown from the
intersection point , or about 1,000× for this application.

The discussion above supports the conclusions of this
document because the cryogenic processor in this document is
composed entirely of shift registers operating at about position
. However, Appendix A provides additional detail on
implementation, references to material on logic circuits,
operating points other than position , and theory that applies
to other circuits that work similarly.

A. Storing subcircuits in reversible shift registers

The first step in the synthesis procedure is to create a place to
store the subcircuits. It was noted by another author addressing
this task that “the QECC microcode memory can be designed
as FIFO” [22], which translates to the terminology in this
document as “the PL/AL architecture’s quantum circuit
memory can be implemented with a sequential-access
memory.”

A shift register is a sequential memory and is also the most
basic reversible circuit in the literature, frequently used for
defining logic families [4, 5, 6, 7, 8, 9] and as a test circuit for
measuring [9] or simulating [10] dissipation.

This document takes the straightforward approach of
storing each subcircuit definition in a circular shift register as
shown in Fig. 5. Since the switch matrix in Fig. 3b has 9
switches, the shift registers holding the subcircuits in Fig. 2a
will be 9 bits wide. Each circular shift register will have the
exact length l needed to store the circuit specified in Fig. 2b or
c, given the chosen prime-line encoding.

If a shift register has length l, clocking the shift register l
times will cause its entire contents to shift out its right side in
the correct sequence to drive the switch matrix. Since the shift
register is circular with period l, the data will be returned to its
original position and can be reused.

While reversible logic recycles energy, we need to consider
whether or not the energy delivered to the switch matrix is also
recycled. The creators of the PL/AL architecture used a matrix
of High Electron Mobility Transistors (HEMTs) [16, Fig. 1] as
switches. Each switch is controlled by a 300 mV signal in [16,
Fig. 3], which is about the same as the operating voltage V
used for the circuits in this document. However, the argument
here applies to any voltage-controlled switch.

As explained in Appendix A, reversible transistor circuits
recycle energy stored in the capacitance C of electrical nodes
carrying signals. In this case, the HEMT’s gate capacitance CL
is in parallel with the circuit’s electrical node capacitance C, so
the reversible circuit will naturally try to recycle the energy
delivered to the switches.

If the switch presents a large capacitance CL—such as a
large HEMT or a remotely located switch with large
interconnect capacitance—the load may cause I2R power
dissipation in the transistors creating the signal. The dissipation
will be quadratic in C+CL and may be undesirable. The remedy
is to increase the transistor widths on either side of the bus. In
the simulation associated with this document, the transistors
are 4× wider on the path between the power-clock and the
address line bus the circuit generating Fig. 1b.

The design process described above is distinctly different
from the one used in CMOS—and the difference is critical to
energy efficiency. A CMOS designer confronted with Fig. 5
would typically “improve” the design by inserting buffers and
format converters into the address line bus. This would defeat
energy recycling if applied to reversible logic, but CMOS does
not recycle energy anyway.

B. Clock enables

The reversible circuit in Fig. 5 looks like a tantalizing start of a
reversible classical control system, but when both shift
registers are considered, one discovers there are no reversible
circuits in the literature with either clock enables or bus
interfaces. Fully adiabatic static circuits have been devised for
these purposes and are summarized below to the extent
necessary to support the remainder of this document. The
circuits are also described, with circuit diagrams, in Appendix
B [14] and reference implementations appear in the ngspice
simulator input in Appendix C.

The fully adiabatic clock enables in this document work
differently than CMOS clock enables. CMOS clock enables
leave the clock running but alter circuit’s logic so the circuit
does not do anything.

In contrast, a data-controlled clock for reversible logic halts
at DC levels when not enabled and is identical to the main
clock when enabled, as illustrated in Fig. 6a. The topmost trace
is ̂0, the first phase of the main clock. The following 8 traces
are data-enabled clocks (except for the bottommost green trace,
which will be explained later).

A data-controlled clock in Q2LAL, the reversible logic
family developed for the purposes of this document, is created
by augmenting a one-bit or 8-stage shift register. A set of 8
data-controlled power-clocks are generated from four internal
nodes of the shift register and four additional simple circuits
connected to other internal nodes of the shift register. When a
string of k 1 bits enter the shift register, all 8 power-clocks go

Fig. 5. Reversible PL/AL based on shift register storage. The two 9-
bit wide shift registers can be imagined to hold the circuit
descriptions for Fig. 1b and c. To execute Fig. 1b, the state machine
enables the clock for a full rotation of the longer cyclic shift
register. Likewise for the circuit in Fig. 1c and the shorter register.

9-bit parallel shift register

shorter shift register
en

en
9 State

machine

address-
line bus [16]

through k cycles and then halt at DC levels. Fig. 6a shows the
waveforms for k = 3.

C. Fully adiabatic busses

A data-controlled clock can be enhanced to drive a bus by
adding one additional clock and its inverse (two signals). The
bus interface is created by rewiring one internal node in the
shift register to use this new clock in lieu of one of the original
8 phases. The bottommost trace in Fig. 6a shows two traces
that are the same when the clock is running, but the green bus
control trace starts and stops one tick, or time , sooner than the
other.

The bus’s use in a system can be explained with reference
to Fig. 5. A bus-interface shift register drives its output when
the clock is enabled, going into a high-impedance state when
the clock is disabled. The transition between driving and not
driving is designed such that a series of shift registers can take
turns driving the bus if exactly one shift register is enabled at
all times.

The sub circuit powered by a data-controlled clock has all
the benefits of energy recycling when the clock is running.
When the clock is stopped, the sub circuit essentially turns into
a static memory, holding state while dissipating only leakage
power.

D. Advances

While shift registers are ubiquitous in the reversible logic
literature, Fig. 5 makes advances over standard reversible
logic.

 The reversible logic literature does not contain
data-controlled clocks, meaning clocks run all the
time. While the classical adiabatic principle can
reduce the dissipation of logic, turning memories
into low-dissipation logic still dissipates more than
storing data in static circuits. The data-controlled

clock provides a consistent way to implement both
logic and memory with high energy efficiency.

 If the function Fig. 5 were to be implemented with
the reversible logic in the literature, a multiplexer
would be required to select the output of one of
the registers to become the address-line bus—and
then demultiplex the data to preserve reversibility.
Each multiplexer would include a tree of AND-
OR gates that would be vastly more complex than
the bus interface circuit in Appendix B.

 The reversible logic in the literature recovers
energy from its own operation, yet the shift
registers in Fig. 5 recover energy from the output
load, which is not described in the literature.

E. State machine and PL/AL architectural issues

The next step in the synthesis process is to create the fully
reversible state machine in Fig 5. This should be impossible
under the theory of reversible logic because the state transition
diagram is irreversible, but this obstacle is overcome by
placing irreversible functions on the standard computer in Fig.
3e.

Fig. 2a shows a quantum computer performing error
correction and then forgetting that it did so, which is
irreversible. Specifically, symbols - identify points where
the state transition function maps multiple states to the same
successor state.

Landauer wrote a seminal paper [18] on how a classical bit
produces a minimum dissipation of the order of kT when it is
“erased” or deleted. Taken at face value, Fig. 3 shows a
continuous stream of bits flowing into the cryostat as it moves
from Fig. 3e to a. While qubit measurement sends information
out, there is no way to erase a bit by turning it into a qubit,
leading to a buildup of bits in the cryostat that will have to be
erased.

While kT is very small, the minimum dissipation for
transistor circuit to erase a bit is about ½CminVt

2, where Cmin is
minimum node capacitance to hold a signal and Vt is the
transistor’s threshold voltage [6, p. 91]—which is thousands of
kT in today’s technologies.

F. Externally controlled Fredkin gates

The theoretical discussion of how to avoid dissipation due to
bit erasure is beyond the scope of this document, but the
argument is summarized below.

We achieve the effect of sending data into the cryostat
without dissipation through an externally controlled Fredkin
gate, shown in Fig. 7a and b. For reference, a Fredkin gate has
one control signal and two data signals. The data signals are
swapped if the control is a 1, but the gate has no effect if the
control is a 0.

The standard design in Fig. 7a shows data being sent into
the cryostat as voltage v(t) and back later as voltage v’(t) to be
erased by the external system. This is perfectly legitimate
under reversible logic theory, but would require two sets of
wires and the cryogenic electronics would need to drive the

Fig. 6. Simulated traces. See text for explanation, but essentially
from top:  ̂ 0, ̂0-6, and then the superimposed traces of ̂7 and ̂x.
This is followed by the CMOS reference and on the bottom, 3+
repetitions of the pattern 010 111 being transmitted to the address
line bus.

(a) Data-controlled clocks

(b) CMOS

V

(c) One bit of address line bus

long cable out of the cryostat. The alternative design in Fig. 7b
applies a single voltage v(t) = v’(t) to the cryogenic circuit.
While more efficient, it does not follow the standard reversible
logic electrical protocol and must be engineered from first
principles.

The Fredkin gate in Fig. 7b is implemented as the crossover
in Fig. 2d, where the control signal D is allowed to transition
only at the reset point of the reversible protocol. This
synchronization is straightforward because the standard
computer Fig. 3e generates both the reversible clocks and the
control signals.

The practical consequence is to route a 1 bit to one of two
destinations, but the circuit does not add classical bits to the
cryostat that must be erased with some minimum dissipation.
While the system in the cryostat remains adiabatic, it is only
reversible if the external system applies the time-reversed
sequence of values to the Fredkin gate’s control.

G. A one-hot state machine

For purposes of exposition, Fig. 7c shows two reversible shift
registers. Depending on whether the diamond structure sends
signals straight through or crosses them over, the overall
structure will behave as either two independent reversible shift
registers or a single long one. The crossovers could be the
same as Fig. 2d as long as the signal D only makes transitions
when the electrical protocol is in the reset state.

The state machine in Fig. 5 will be a shift register
initialized with a single 1 bit. To explain the terminology, there
is “one hot” bit, i. e. a 1, and the rest of the bits are 0. The
position of the 1 bit defines the state.

H. The synthesis step

The logic synthesis process is based on shifting between two
views of Fig. 2a. These views are the (1) subcircuit sequence
graph, flowchart, or state machine description where the
rectangles represent a state and (2) circuit diagram where
rectangles represent shift register stages. The connection
between these views is that when a shift register stage holds a
1, the state machine is in the corresponding state.

The rectangles and diamonds in Fig. 2a become the shift
registers and crossovers in Fig. 7d, which is simply a
reorientation of Fig. 7c to the form of an “if” statement in the
error correction algorithm in Fig. 2a [13].

I. The function of the state machine

The function of the state machine in Fig. 3a and Fig. 5 is to
enable shift registers containing quantum gate patterns by
turning on their clock.

Say a gate pattern has n time steps, corresponding to an n-
stage shift register.

If n = 1, the state machine’s shift register could be used as
the shift register portion of a data controlled clock, so the shift
register built into the state machine would drive the subcircuit
definition onto the switching matrix directly.

The circuit in Fig. 7e could be used where n > 1. The n
single-stage shift registers create a n-cycle delay. The two
CNOT gates turn a data controlled clock on for n cycles.

In fact, a gate pattern of n time steps can be reduced to n
gate patterns of one time step each, which avoids the need for
CNOT gates.

This document has been discussing “reversible logic,” but
this CNOT gate is the only reference in this document to any
reversible gate other than a non-inverting buffer—which is not
normally considered logic.

J. Advances

The structure in Fig. 5 is recognizable as a data decompressor,
which may represent an advance in a field that has repeatedly
attempted to build a viable microprocessor.

In the terminology of data compression, symbols are loaded
into the circular shift registers for repeated use. The output is

Room-
temperature
crossover
control

Fig. 7. It is legal to send data into a reversible logic region and later
send it out. (b) However, an externally controlled Fredkin gate is
equivalent to immediately sending the data back, requiring only one
wire. (c) Depending on whether the diamond-shaped modules
connect wires straight through or cross over, the circuit comprises
either one or two cyclic shift registers. (d) An algorithmic “if”
statement invoking states in the lower shift register conditioned on
qubit measurement data coming from room temperature. (e) A
module that turns on the clock when the system is in any of the
three states in the bottom row.

shift
register

shift
register

shift
register

(c) Reconfiguration on the fly (d) “if” as reconfiguration

(e) Enabling a clock for three states

shift
register

shift
register

shift
register

Data-controlled
clock



~

~ ~

shift
register

~ ~

(b) Alternative design (a) Standard design

v’(t) v(t) v’(t) v(t)

Cryo  path of 
reversible signal

 Fredkin gates 

sequence of symbols, representing quantum subcircuits,
specified by just the decisions in the flowchart. The decisions
comprise a lot less information than, for example, storing the
symbols in an array and specifying a sequence of array indices.

A GIF image in a Web browser or a Zip file on a computer
can represent the output of an arbitrarily complex calculation
even though the GIF or Zip decompressor is simpler than a
microprocessor. This is obvious because the complex
calculation occurs someplace else and it is just the answer that
gets put in the GIF or Zip file.

What has been illustrated above is an architectural
extension to Landauer’s concept of minimum energy. Practical
refrigeration systems are always below 100% Carnot efficiency
and practical logic devices always operate above Landauer’s
minimum energy, so moving a calculation from one
environment to another causes a change in the energy of the
calculation and the cost to transmit data between
environmentss—the latter including digital costs of
compression and decompression, signal energy in data
transmission, and heat leakage in cables.

The subsystem just presented translates information
between environments that differ in they way they treat energy
and information. This is a new issue because all computers had
been of the same type prior to the advent of quantum
computers.

This is analogous to a cache in a conventional computer
that translates information between environments that differ in
the way they address device count and latency.

K. Adiabatic multiplexing

Crossovers using the circuit in Fig. 2d would require one or
two wires into the cryostat per signal, but a multiplexing
scheme [23] with adiabatic dissipation levels (i. e. RC/) could
reduce the number of wires quadratically.

Fig. 8a shows the baseline dissipation model for on-chip
reversible transistor circuits. One side of a transistor is
connected to a power-clock originating off chip. The transistor
charges wiring capacitance CW plus load capacitance CL
through a channel resistance Ron that is likely to be around 50
k. Taking this as the baseline, the multiplexing circuit should
have dissipation of the same order or lower.

The DRAM-like circuit in Fig. 6b [23] can send data from a
room-temperature system to a cryogenic reversible subsystem.
The DRAM-like circuit will be driven by r analog or digital
row wires and c digital column wires coming from room
temperature, one of each shown. Since these wires are driven
externally, the only dissipation would be due to the on-chip
wire resistance, which will be low compared to 50 k and its
dissipation can be neglected. The access transistor, equivalent
to Ron when selected, could be located physically close to CL so
the wire capacitance downstream of the access transistor will
be small. This will permit CL to be charged with the same level
of dissipation as an internal reversible logic signal.

L. Interface to standard computer

A complete interface to the standard computer is beyond the
scope of this document, but can be summarized with reference
to Fig. 9.

Fig 9 shows the interface between the synthesized
reversible logic and software on the standard computer. A state
array and an AL-bus array in the memory of standard computer
appear at the top. Below, the subcircuit graph in Fig. 2a has
been linearized to show vertical alignment with entries in the
arrays and the state machine’s initial state is indicated by a star.

The functional connection starts with software maintaining
the data in the arrays so they are a shadow copy of the state of
the reversible logic. If the state machine in Fig. 5 has n states,
state array will be of length n, where each entry represents a bit
of the one-hot state register. Each bit could be represented as a
0, 1, or X, where X represents the unpredictable value that
appears at power up.

The AL-bus array will also have length n, representing the
AL-bus output when the state machine is the state with the
same index, such as at points C and D. Each entry in the AL-
bus array could be an X if the register contents are
uninitialized. The subcircuit definitions could be stored in the
AL-bus array as well.

Since the standard computer generates both the power-
clocks and decisions, the two arrays can be updated to maintain
a shadow copy of the state on the hardware in the cryostat.

While details are not included in this document, an
algorithm would be created that resets the internal state after
power-up through use of uninitialized X state symbols, shortest
path algorithms to navigate the graph, and a limited set of
multiplexed voltage drivers that set shift register contents like a
SRAM cells.

Power-up initialization completes when the one-hot state
register is correctly set to the starred location in Fig. 9 and all

(a) Internal signal: R/R2; C/(CW+CL)

R2
CL

GND

Pwr-clk

Ron
CL

GND

Row
DAC

Cryo

(b) ‘DRAM’: R is Ron; C is CL

Fig. 8. DRAM-type external drive. (a) The baseline on-chip logic is
cryogenic transistors (Ron) driving circuit wiring plus a load
capacitance CL. (b) For off-chip DRAM-type signals, the cryogenic
transistors (Ron) are deliberately close to the load capacitor CL; the
½CVP

2 energy on the long wires is dissipated at room temperature.

Incremental wire
capacitance CW

Circuit wiring CW

Column

the shift register memory has been
initialized to the proper subcircuits.

With one exception, this
document has been organized such
that the clock could be turned on at
this point and the quantum
algorithm executed by via
guidance from the standard
computer at decision points.

The exception is that the
DRAM external drive could be
called upon to simultaneously
drive decision values that interfere
due to a use of the same row or
column or different data values.
This situation can be alleviated by
judicious allocation of decision
values to positions in the crossbar.
If conflicts still exist, the crossbar
can set decision values early
through use of a scheduling
algorithm on the standard
computer.

IV. RESULTS

The circuits in Fig. 5 have been simulated with Spice (ngspice)
using input available as open source (details later), with the
simulation output in Fig. 1 and Fig. 6.

A. Functionality

The trace in Fig. 6b is the comparison waveform generated by
a CMOS inverter driving a 100 pF capacitor. The power
consumption of the CMOS inverter creates Fig. 1a.

The trace in Fig. 6c is one line of the address line bus,
which drives the 100 pF capacitor. The circuit being simulated
has two shift registers containing patterns 010 and 111. They
are transmitted in an alternating sequence, so the bottom trace
outputs to the address line bus three and a third repetitions of
each pattern: 010 111 010 111 010 111 01 (with spaces
inserted for visual convenience).

B. Scaling

The hypothesis put forth in the discussion related to Fig. 1 is
that CMOS circuits would have constant energy per operation
while reversible circuits would scale as O(1/).

The curves at Fig. 4 point  should have a slope of 1 to
the extent the hypothesis is correct. There are many curves near
point , representing simulations with, for example, different
substrate bias, and some have slope pretty close to 1. As far as
the author knows, the irregularity near point  is due to the
transistor operating points being outside normal CMOS
operating conditions where Spice and the transistor models are
not well tested. Debugging Spice at unusual operating points is
currently designated as future work.

Transistors can be described by equations and the equations
analyzed for asymptotic dependence as though they were

operation counts in an algorithm. This makes the hypothesis
equivalent to saying that the transistor equations for CMOS
and reversible circuits should have energy per operation O(1)
and O(1/).

Combining algorithms in computational complexity theory
is equivalent to combining circuits. Since the entire controller
in Fig. 5 is comprised of subcircuits where energy per
operation scales as O(1/), the behavior of the whole circuit
should scale as O(1/).

Circuit simulation should reveal the asymptotic behavior of
the circuit equations. The difference in slopes between Fig. 1a
and b is about 15×, which is non-trivial although less than
expected. This is in part due to the curve in Fig 1b including a
simple controller whereas the curve in Fig. 1a is just an
inverter.

The open source ngspice simulator file includes that
compares a more sophisticated reversible logic quantum
computer controller with a CMOS work-alike, yielding a 131×
dissipation reduction. Appendix C has more detail.

V. CONCLUSIONS

Reversible microprocessors demonstrated a reduction in
dissipation equal to the reduction in clock rate, but the
reduction in throughput detracted from the increased energy
efficiency and the overall approach was thwarted by the lack of
an adequate energy recycling power supply.

This document showed how to transform a quantum
algorithm into a reversible transistor circuit for driving qubits.
The reduction in the transistors’ clock rate is about the same as
the speed difference between CMOS gates and qubit
measurements, so it is benign, and the elusive energy-recycling
power supply is not necessary due to cryogenic operation.

State register

9

U1U2U3 XZZXI IXZZX XIXZZ ZXIXZ XZZXI IXZZX XIXZZ ZXIXZ

A B D C

Shift registers

(a) Standard computer

(b) Cryogenic processor

State array

AL-bus array

0 n

0 n

Array:

Fig. 9. Functional interface between the (a) standard computer and (b) cryogenic processor. Software in the
standard computer includes two arrays that shadow the one-hot state machine and the subcircuit storage
registers. The reversible hardware located in two rows, the top comprising the one-hot state register and the
bottom comprising the subcircuit storage registers. A state transition region includes wiring that implements
the arcs in the subcircuit graph. The state machine’s initial state is indicated by a star. The AL is the output
of the system.

State transition wiring

AL bus
(output)

Thus, this document show how to apply reversible logic to
an important application without further breakthroughs.

The open source Spice (ngspice) simulator input described
in Appendix C rigorously defines the circuits and shows a
131× dissipation improvement at 1 MHz and 1/ dissipation.

Thus, disaggregating the concept of “CMOS” into
transistors and circuits, and switching to reversible circuits may
reduce dissipation in the cryostat substantially. This will cut the
user’s power bill and also reduce congestion in the cryostat,
perhaps leading to larger quantum computers.

The generalization of the concept above is a computing
system with multiple subsystems at different temperatures,
built from technologies with different computational
properties, and connected by refrigerators with sub-Carnot
efficiencies. To implement this type of computing system
optimally, the designer would allocate computations and
memory to different subsystems to minimize dissipation per
unit of throughput. This document provides an example.

This document showed that the structure in Fig. 3a, called a
cryogenic processor [16] due to its location, is performing new
information heat management function unique to quantum
computers. The structure is in an environment where heat
generation should be minimized and this document showed
that it can be implemented with essentially no logic gates. The
structure in this document is similar to a data compression
system, yet it could be given an name related to its function –
similarly to the way classical computing community named its
memory interface a “cache.”

APPENDIX A CRYOGENIC REVERSIBLE LOGIC USING

TRANSISTORS

This section compares CMOS, cryo CMOS, and cryogenic
reversible logic all based on the same transistors.

Cryogenic reversible logic has been considered previously
[5, p. 93], but no refrigerated computing technology, reversible
or not, has successfully competed with room temperature
CMOS.

However, qubits requiring cryogenic operation present a
different decision tree. A quantum computer requiring
cryogenic qubits will get its computational power from
quantum speedup, not the classical control electronics, and the
classical control system will need to accommodate. This
creates a competition between cryogenic classical technologies.
Cryo CMOS and classical Josephson junction logic are the
incumbents, yet this document considers only cryo CMOS.

A. Capacitor charging

Most computing technologies use voltage-based signaling
where dissipation is dominated by the energy required to
charge the capacitance of the signal nodes.

Fig. 10 compares the dissipation of two circuits charging an
node in a multi-temperature system, extending the result to the
wall-plug energy of the logic families using the circuits.

As illustrated in Fig. 10a, CMOS dissipates E = ½CV2
every time a voltage node switches, where C is the wire or
node capacitance and V is the supply voltage.

For cryo CMOS, the dissipation in the cryostat, indicated
by the flame in the figure, must be multiplied by the
refrigerator’s specific power PS and added to the dissipation.
Specific power is the number of watts of wall-plug energy
required to remove one watt from the chip. A heat sink has PS
= 0 and a refrigerator cooling to 4 K has PS  1,000.

Fig. 10b shows resistance R being divided into two series
resistances R1 and R2, R1 + R2 = R, where R1 is outside the
cryostat. The total energy drawn from the power supply must
be the same because two resistors in series is just another
resistor, but only R2 is in the cryostat and contributes to cooling
overhead.

The right side of Fig. 10 tallies the wall-plug energy
consumption. Note that room temperature CMOS would win if
it could compete.

B. Ramped power-clocks leading to a logic family

While the circuit in Fig. 10b is powered from the fixed voltage
on the left, voltage enters the cryostat at the center point of the
divider formed by R1 and R2. For a given charging time , the
smallest dissipation in R2 occurs when the capacitor is charged
at a constant current [5]. This requires R1 to be a variable

Cooling overhead:
PS = 1,000 W/W

EC = (1+PS) ½ CV2
E = 501 CV2

(a) CMOS

R
C

GND

V

R2
C

R1

GND

V

(b) Adiabatic

ER = ½ CV2

Say R1 = 10 R2:
E 46 CV2

Cryo

Cryo

Fig. 10. (a) Charging a capacitor from a fixed voltage dissipates
½CV2. If the heat has to be removed from 4 K with PS = 1,000×
overhead (1,000 W/W), the total energy from the wall plug will be
501CV2. (b) If we move R1 to room temperature, only the portion
R2/(R1+R2) of the heat will flow through the refrigerator and incur
the 1,000× overhead. If R1 = 10 R2, for example, this reduces overall
power consumption and heat generated from 501 CV2 to about 46
CV2. Resistor R1 could be the output transistor of a waveform
generator, where it would vary with time (see text). (c) To establish
context, reversible circuit families effectively vary R1 so the voltage
entering the chip is a linear ramp.

Say R1 + R2 = R:

R + PSR2
R

(c) Overlapping power-clock waveforms

GND
V

GND
V

GND
V

0

1

7

E = 2R2C/ × ½CV2
 where  is the
 length of the ramp

resistance that creates a linear ramp at the center point between
R1 and R2.

If the voltage entering the cryostat is a fixed waveform, the
voltage can be generated once and connected in parallel to
many instances of R2 and C. Such a waveform is called an AC
power-clock, illustrated in Fig. 10c.

Power-clocks for reversible logic families have upward and
downward sloping ramps as indicated in Fig. 10c. These logic
families typically have 4-8 clocks that contain flat tops and
bottoms. The multiple overlapping clocks allow signals to be
processed by electrical protocols, such as reset-charge-
compute-reset, ultimately yielding a family of reversible gates.

C. Quantifying the dissipation reduction

The in-cryostat dissipation of the circuit in Fig. 10b driven by a
ramp is E = 2R2C/ × ½CV2, for large , where  is the length
of the ramp [5]. The reader will notice ½CV2 is common to the
dissipation expressions for both CMOS and the adiabatic
circuit, but the adiabatic circuit has the additional factor
2R2C/, which can be considered an energy factor and is the
reason for the 1/ dependence of energy on clock period.

Note that this analysis only yields an approximate
comparison because CMOS and reversible circuits are
different. The reversible circuit is usually more complex,
resulting in more gates and more dissipation than is predicted
by this analysis. Irrespective of the number of gates, wiring
capacitance depends on layout details, causing C to vary from
one circuit to another.

Fig. 1 plots the cumulative energy delivered to each circuit
in Fig. 10, where the second circuit is driven by a power-clock
similar to Fig. 10c.

D. Adiabatic powertrain

Sending power-clock waveforms from room temperature into
the cryogenic environment without little distortion, noise, or
heat leakage in the transmission lines requires a structure called
a cryo-adiabatic powertrain [14].

E. Historical context of cryogenic reversible logic

The programmatic impact of the cryo cooler can be explained
with the help of Fig. 11.

Of the external energy entering a reversible circuit, a
portion 2R2C/ = (1  GL) is turned into heat and the remaining
portion GL passes through and is available for recycling. GL is
a sub unity power gain that could be 99.9%. The energy
recycling power supply reorganizes energy into a the properly
shaped waveform, but turns a portion (1  GP) into heat and
passes portion GP to the circuit to augment the external energy.
Thus, the external energy is recycled in amounts GLGP, GL

2GP
2,

..., amplifying the external energy by the factor 1/(1  GLGP).
Let us say the objective is to deliver ½CV2 to the circuit. This
will require external energy in the amount of

E1 = (1  GLGP) ½CV2.

However, the portion (1  GL) of the ½CV2 delivered to the
chip will be dissipated with overhead PS. This leads to
additional external cooling power

E2 = (1  GL) ½CV2 PS.

Thus, the total external power is ER = E1 + E2 for the
reversible circuit and EC = (1 + PS) ½CV2 for CMOS.

This leads to a lower-is-better figure of merit

ER/EC = 1 – GL(GP + PS)/(1 + PS).

The equation above is remarkable because varying PS
transforms it into recognizable and important forms.

The original conceptualization of reversible logic had just
one temperature, implying a passive cooler with a PS = 0. In
this case the previous equation becomes

ER/EC = 1 – GLGP at room temperature.

Physical demonstrations in the 1990s measured GL values
up to 99.9%, but GP lagged so the research projects concluded
that higher efficiency energy recycling power supplies were a
long-term research direction.

Operating the circuit at progressively lower cryogenic
temperature is equivalent to raising PS. In the limit as PS  ,

ER/EC = 1 – GL at a cryogenic temperature,

essentially a high PS makes the problematic term GP term
disappear.

The physical demonstrations in the 1990s successfully
demonstrated a GL values as high as 99.9%, albeit at room
temperature. However, we now know that cooling CMOS has
little effect on this type of circuit. Thus, the physical
demonstrations of reversible logic in the 1990s yielded high
enough values the GL parameter to validate the quantum use
case, even though the experimenters did not know it at the
time.

APPENDIX B Q2LAL AND ENHANCEMENTS

Refrigerator
PS  0

Reversible
circuit
GL < 1

Energy recycling
power supply

GP < 1

Energy
in

Heat
out

Computing
Fig. 11. Power flow for reversible circuits. PS is the specific power of
the refrigerator, PS = 0 for a no refrigeration. GL and GP are the sub-
unity power gain of the logic and energy recycling power supply, with
guideline values of 99.9% and 95%.

Tick #t
0 1 2 3 4 5 6 7

 ̂0 = ̌4

 ̂1 = ̌5

 ̂2 = ̌6

 ̂3 = ̌7

 ̂4 = ̌0

 ̂5 = ̌1

 ̂6 = ̌2

 ̂7 = ̌3

Ŝ0 = D̂0

Ŝ1 = D̂1

Ŝ2 = D̂2

Ŝ3 = D̂3

Ŝ4 = D̂4

Ŝ5 = D̂5

Ŝ6 = D̂6

Ŝ7 = D̂3

(a) Clocks

(b) Signals

Fig. 12. (a) Power-clocks and (b) data signaling
formats for a representative 8-phase circuit. Each
positive-going pulse, ̂ i is equivalent to a negative-
going pulse  ̌i+4 mod 8.

Fig. 14. (a) Transmission gate
notation, notably including multi-
rail. (b) Framework for multiple
reversible logic families. F is
forward and R is reverse
computation.

S

Ŝ S
2

2

2

 Š

 S S

(a) Transmission gates

(b) Framework (2 stages, 1 rail)

S3 S1

4

 ̂2
1

 ̂3
2

 ̂3
5

 ̂4

S2
F2 F3

R1 R2

2 2

This appendix explains data-controlled clocks and circuit
enhancements for support of busses, both of which are
necessary to the cryogenic processor in Fig. 5. These
enhancements are explained in the context of the Quiet 2-Level
Adiabatic Logic (Q2LAL) family, developed by the author for
more stable operation in a cryogenic environment [14].

Fig. 12 shows Q2LAL’s 8-phase waveforms. The power-
clocks are divided into ticks of duration , the ramp time. The
power-clocks can be labeled ̂0-7, with the circumflex (hat)
accent indicating that the power-clock is a positive-going

pulse. However, flipping a power-clock upside down yields the
same waveform as the pulse four ticks ahead or behind. Thus,
the power-clocks have the property that ̂i = ̌i+4 mod 8, with
the caron (cup) accent indicating the waveform is a negative-
going pulse.

Data signals follow a reversible electrical protocol. The
signal starts at a resting or reset state of 0 V for one tick of
duration . If the signal is a 1, it rises in one tick of duration ,
stays at V for five ticks and then ramps back to GND in the
sixth tick.

Fig. 13 illustrates dual-rail signaling. Each data connection
driven by ̂i constitutes two wires designated Q̂i

(0) and Q̂i
(1).

The base wire Q̂i
(0) has a pulse to V for a 1 as shown and a DC

value of GND for a 0. The second rail is the opposite with a
DC value of GND for a 1 and a pulse to V for a 0.
Alternatively stated, the first rail carries signal Q̂ and the
second rail carries Q̂.

Fig. 14a illustrates the basic circuit building blocks. The
transmission gate
symbol represents
a pFET and an
nFET connected
as shown and
driven by
electrically
complementary
signals Ŝ and Š.
The dual-rail
transmission gate
uses the same
symbol but 2-
conductor busses
and a replication
of the circuit.

The circuit
framework is
illustrated in Fig.
14b as a sequence
of cycles
comprising
triangular
adiabatic
amplifiers and
transmission
gates. The relative
phase numbers
around a loop S1,

Fig. 13. Dual-rail signal waveforms. The first rail pulses for 1
and is a flat line for 0; the second rail is the opposite. Arithmetic
on i is mod 8.

V

GND
V

GND
Q̂i

(1)

Q̂i
(0)

Rail 0 Tick #i Rail 1 Tick #i
i i+1..5 i+7 i i+1..5 i+7 i+6 i+6

či-1

(a) Q2LAL: Buffer stage i, both rails

(b) helper signal for clamp; does not depend on data

č
i

ϕ̂i ϕ̂i

ϕ̂i+4

ϕ̂i-2

ϕ̂i-1

 ̌i-1

Âi-1

Q̂i
Âi-1

Âi-1 Âi-1

Âi-1
Q̂i

Âi-1

či-1

Fig. 15. (a) Adiabatic amplifiers for both rails, each based on
data signals Ai-1 from the previous stage. (b) The helper signal
can be generated once in an entire circuit from available
clocks.

̂2, 1, S2, ̂3, and 4 is always the same, yet subsequent loops
repeat the pattern with the indices incrementing each time, mod
8. The F (forward) and R (reverse) functions, such as F2 and
R2, are can be used to implement reversible gates.

Fig. 15a details the two rails of the adiabatic amplifier,
which contains circuits for each of the two rails. Each of the
two rails for phase i, Q̂i, is controlled by data signals from the
previous phase Ai-1 and a signal či-1.

Clamp signal či in Fig. 15b is generated by two
transmission gates. The inputs to these transmission gates are
just clock phases, making či independent of data. So, či can be
generated once and used for more than one gate.

The explanation above is specific to the Q2LAL logic
family, yet the subsequent discussion applies to other
reversible logic families as well, in part because it is
implemented by novel clocking, not the circuit.

F. Data-controlled clocks and bus interfaces

Clocks ̂0-7 in Fig. 16b are solid lines in the shaded center of
the diagram to show the clocks when running, but dashed lines
on the left and right represent the clock levels when stopped.
Building on the data-controlled clock waveforms in [14], this
article introduces an additional clock ̂x and its electrical
inverse ̌x, which starts and stops one tick or time  earlier than
the others, as shown by the bent bottom of the shaded region.

Fig. 16a is the circuit for an 8-phase section of a Q2LAL
shift register. The subsequent discussion around Fig. 16 applies
more generally because other fully reversible circuit families
differ only by the clock waveforms and the signaling
convention for data.

G. The memory cell

The center of Fig. 16b shows the clocks running for one 8-tick
clock cycle, but the clock is stopped in the outer regions of the
graph.

The red circular arrow in Fig. 16a identifies an amplified
conductive cycle when the clock is stopped, creating a memory
cell. At this point, ̂0-3 are low and ̂4-7 are high. The reader
will see that the clocks around the cycle, ̂5, 4, ̂6, and 7, all
have high values. Signals ̂5 and ̂6 supply power to two
adiabatic amplifiers and 4 and 7 cause two transmission
gates to be turned on.

H. The bus interface

The red circle with a cross through the middle, ̂1, 0, ̂2, and
3 has all low clocks indicating that there is no memory cell.
However, ̂7 enables a transmission gate that drives A0. A0 is
actively driven low when the clock is stopped because the
drive voltage is determined by  ̂0, which is low at that point.

As background information, a reversible shift registers of
most any logic family cause the memory cell to migrate to the
right as the clock phases proceed, see [7, 18].

I. Special clock x for busses

However, the power-clock x in Fig. 16b allows the shift
register to drive a reversible bus. Signal x is dual-rail
comprising ̂x and its electrical inverse ̌x (not shown). The x
waveform is identical to 7 when the clock is running but it
turns on and off one tick earlier.

Thus, replacing 7 with x at the location illustrated in Fig.
16a will change the circuit’s behavior only when the clock is
stopped. While 7 turns on the transmission gate that drives A0
low when the clock is stopped, x will cause the transmission
gate to be an open circuit and A0 will not be driven.

Since the reversible logic literature assumes all clocks run
all the time, Fig. 16a is just a shift register in accordance with
reversible logic theory prior to this article, even when 7 is
switched to x.

However, signal x will put A0 into a floating state when
the clock is stopped, allowing us to extend reversible logic
theory with a circuit that drives a bus only when the clock is
running.

A CMOS tri-state [24] bus interface can drive a bus to the 0
and 1 states, but also has a third state that does not drive the
bus at all. A CMOS bus also has a design constraint that
exactly one of the interfaces drives the bus at a time—except
during a handoff period where one circuit stops driving and
another starts. The handoff must be designed to avoid electrical
conflicts, such as short circuits, that could result if two circuits
attempted to drive the bus to different values at the same time.

 ̂0

 ̂1

 ̂2

 ̂3

 ̂4

 ̂5

 ̂6

 ̂7

 ̂x

Time 

Fig. 16. Data-controlled clock. (a) Q2LAL is static, meaning the clock can be stopped at any time. The objective in this circuit is to start and stop the
clock at the beginning of the first phase or tick. However, this means the first four clocks will rest at GND and the second four at V. (b) Clocks ̂0-7 plus
special clocks ̂x and its electrical inverse  ̌x for supporting busses. The first four data-controlled clocks ̂0-3 are just taps of existing signals. However,
the others  ̂4-7 require the special circuit. (d) Augmented circuit shows  ̂x and ̌x need data signals from beyond the left edge of the circuit, suggesting a
renumbering of phases. However, the diagram highlights the fact that data is used from only five of the eight phases, making three phases available
where the data may be altered by logic in time for another, back-to-back, data-controlled clock (such as in a state machine).

V

Âi-5

Âi-5

 ̌i = ̂i

 ̂i

Âi-5

 ̌i-1

 ̌i+1

 ̌ i+2

 ̂i+2
ĉi+3

(c) Special circuit that clamps to V (b) Data-enabled clock waveforms, with ̂x; waveforms range GND to V

(a) Previously described shift register with annotations

(d) Data in shift register enables clocks

A7 A1 A-1

2

 ̂0
7

 ̂1
0

 ̂1
3

 ̂2

A0

F0 F1

R-1 R0

A3

4

 ̂2
1

 ̂3
2

 ̂3
5

 ̂4

A2

F2 F3

R1 R2

A5

6

 ̂4
3

 ̂5
4

 ̂5
7

 ̂6

A4

F4 F5

R3 R4

0

 ̂6
5

 ̂7
6

 ̂7
1

 ̂0

A6

F6 F7

R5 R6

1

F-1

 ̂0

6
 ̂7

R-2

 ̂2  ̂1  ̂0

 ̌x

 ̂x

ckt.
(c)

ckt.
(c)

ckt.
(c)

ckt.
(c)

ckt.
(c)

 ̂3  ̂4  ̂5  ̂6  ̂7

A-2

 ̂4  ̂5  ̂6  ̂7

A7 A1 A-1

2

̂0
7

 ̂1
0

 ̂1
3

 ̂2

A0

F0 F1

R-1 R0

A3

4

 ̂2
1

 ̂3
2

 ̂3
5

 ̂4

A2

F2 F3

R1 R2

A5

6

 ̂4
3

 ̂5
4

 ̂5
7

 ̂6

A4

F4 F5

R3 R4

0

 ̂6
5

 ̂7
6

 ̂7
1

 ̂0

A6

F6 F7

R5 R6

x

 ̂3





 

Power notes:
: 2 transistors in the adiabatic amplifier plus the pass gate must be wide
: 2 transistors in the adiabatic amplifier must be wide

First, let us consider why turning the clock on and off at
different times violates the design rules in existing reversible
logic theory [7, 14]. Leaving the clock off for a long period of
time would let A0 float and device leakage could sometimes
cause drift to a significant voltage. When the clock is
subsequently turned on, the sudden discharge of this voltage
could cause a current transient that could disrupt the circuit.

However, two copies of the circuit in Fig. 16a can create a
bus if one interface is driven by the clocks ̂0-7, ̂x, and ̌x, and
another by clocks ̂0-7, ̂x, ̌x, where exactly one of clocks is
turned on at each point in time. This would result in one shift
register leaving data signals, such as A0, floating at exactly the
times when another shift register drives them. As mentioned
above, the voltage on A0 is low on both sides of the handoff, so
there is no short circuit even during the handoff. Thus, the
circuits in Fig. 16 create a bus based on a naturally extended
set of reversible design rules.

J. Data-enabled clock for a bus interface

The circuit to generate the clock for each shift register is shown
in Fig. 16c and d, which is an enhancement of the circuit in
[14]. Shifting a 1 bit into both Fig. 16d and [14, Fig. 10c] at the
A0 position will produce the solid waveforms in Fig. 16b,
which are now called ̂0-7 and ̂0-7. Shifting in a 0 stops the
clock, clamping the waveforms at GND and V.

The new signal ̂x is already available in Fig. 16d, but its
electrical inverse ̌x is dependent on a data signal and is thus
not available as a copy of any existing signal ̂0-7. Thus, Fig.
16d includes a fifth instance of the circuit in Fig. 16c.

Fig. 16d has been drawn to make it visually evident that the
clock relies on only data signals A2…A2 and makes no
connection to the other Ai signals. The functions Fi and the
corresponding functions Ri that reverse the computation must
be the identity function for 2 < i < 2, i. e. they are just
buffers, otherwise the shift register will either produce
incorrect clock signals or not recover energy properly.
However, the functions Fi and Ri for 3 < i < 5 are
unconstrained and can be replaced by arbitrary reversible
logic—such as the CNOT gates in Fig. 7e.

Busses are used in computer architecture to connect many
subsystems or distantly separated subsystems, so busses
frequently present a heavy load, typically a capacitive load,
that requires greater current handling capability. For the PL/AL
architecture, this means some transistors in both the bus
interface in Fig. 16a and the gated clocks driving that interface
in Fig. 16d should be made wider, or some other
accommodation to increase their drive capability. Fig. 16
identifies these locations with .

VI. APPENDIX C OPEN SOURCE SIMULATOR DECK

The current version of this document has not been
submitted for archival publication, so it may be updated. The
following information was current when written.

With the exception of Fig. 4, this document has been
backed up by an ngspice simulator input deck.

This deck comprises six files that each start with an Apache
2.0 open-source license statement. The main file is called aa.cir
and includes instructions in comment fields.

The installation instructions suggest using ngspice version
36 (because it has been tested with only that version). Gnuplot
is needed, otherwise plots will be generated by the more
limited ngspice built-in plot functions. The author uses
Windows 10 and 11; there has been no testing under any other
operating system.

The installation instructions say the code will run with no
additional files, but it defaults to a mode that generates only
Fig. 1 and Fig. 6.

For other simulations, the instructions indicate that the user
must install BSIM models from (a) other places in the ngspice
distribution, (b) the Sky130 open source development kit, or
(c) obtain models from a source that is not publically disclosed.

The distribution files contain a regression testing capability.

The author has not created a permanent home for these
files, but an interested reader is encouraged to check the
following URLs:

https://zettaflops.org/aa/

https://debenedictis.org/erik and search the page for a
section on the “Adiabatic Analysis ngspice simulator.”

REFERENCES

[1] Feynman, Richard. "Simulating Physics with Computers." International

Journal of theoretical physics 21.6 (1982): 467-488.
https://catonmat.net/ftp/simulating-physics-with-computers-richard-
feynman.pdf.

[2] Fredkin, Edward, and Tommaso Toffoli. "Conservative logic."
International Journal of theoretical physics 21.3 (1982): 219-253.
https://apps.dtic.mil/sti/pdfs/ADA101383.pdf.

[3] Arute, Frank, et al. "Quantum supremacy using a programmable
superconducting processor." Nature 574.7779 (2019): 505-510.
https://www.nature.com/articles/s41586%20019%201666%205

[4] W. C. Athas, L. “J.” Svensson, J. G. Koller, N. Tzartzanis, and E. Y.-C.
Chou, “Low-Power Digital Systems Based on Adiabatic-Switching
Principles,” IEEE Trans. VLSI Sys., vol. 2, no. 4, pp. 398–407, Dec.
1994. http://www.cisl.columbia.edu/courses/spring-
2002/ee6930/papers/00335009.pdf.

[5] Saed G. Younis. Asymptotically Zero Energy Computing Using Split-
Level Charge Recovery Logic. No. AI-TR-1500. Massachusetts Institute
of Technology Artificial Intelligence Laboratory, 1994.
https://apps.dtic.mil/sti/pdfs/ADA290054.pdf.

[6] Athas, William C. "Energy-recovery CMOS." Low Power Design
Methodologies. Springer, Boston, MA, 1996. 65-100.

[7] Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static,
Fully Adiabatic CMOS," 2020 IEEE International Conference on
Rebooting Computing, online. At the time of this writing, the conference
is over but the paper is not in IEEE Xplore, but see arXiv preprint
arXiv:2009.00448 (2020).
https://arxiv.org/ftp/arxiv/papers/2009/2009.00448.pdf.

[8] DeBenedictis, Erik P., Inversion for S2LAL. Zettaflops LLC Technical
report ZF004. http://www.zettaflops.org/CATC/S2LAL_Inv_1.02.pdf.

[9] Lim, Joonho, Dong-Gyu Kim, and Soo-Ik Chae. "Reversible energy
recovery logic circuits and its 8-phase clocked power generator for ultra-
low-power applications." IEICE transactions on electronics 82.4 (1999):
646-653. https://s-
space.snu.ac.kr/bitstream/10371/21101/1/Reversible%20Energy%20Rec

overy%20logic%20circuits%20and%20its%208-
phase%20clocked%20power%20generator%20for%20ultra-low-
power%20applications.pdf.

[10] Rengarajan, Krishnan S., Saroj Mondal, and Ravindra Kapre.
"Challenges to adopting adiabatic circuits for systems-on-a-chip." IET
Circuits, Devices & Systems (2021).
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cds2.12053.

[11] Celis-Cordova, Rene, et al. "Design of a 16-bit adiabatic
microprocessor." 2019 IEEE International Conference on Rebooting
Computing (ICRC). IEEE, 2019.
https://ieeexplore.ieee.org/document/8914699

[12] Pauka, S. J., et al. "A cryogenic CMOS chip for generating control
signals for multiple qubits." Nature Electronics 4.1 (2021): 64-70.
https://manfragroup.org/wp-
content/uploads/2021/02/2021.01.25_Nature-Electronics_A-cryogenic-
CMOS-chip-for-generating-control-signals-for-multiple-qubits.pdf.

[13] Chao, Rui, and Ben W. Reichardt. "Quantum error correction with only
two extra qubits." Physical review letters 121.5 (2018): 050502.
https://doi.org/10.1103/PhysRevLett.121.050502.
https://arxiv.org/pdf/1705.02329.pdf.

[14] DeBenedictis, Erik P. Energy Management for Adiabatic Circuits.
Zettaflops, LLC Technical Report ZF008, http://zettaflops.org/CATC.

[15] DeBenedictis, Erik P. "Cryogenic Adiabatic Transistor Circuits for
Quantum Computer Control." 2021 IEEE 14th Workshop on Low
Temperature Electronics (WOLTE). IEEE, 2021.
https://ar.zettaflops.org/CATC/CATC4QCtl-WOLTE.pdf

[16] Hornibrook, J. M., et al. "Cryogenic control architecture for large-scale
quantum computing." Physical Review Applied 3.2 (2015): 024010.
https://doi.org/10.1103/PhysRevApplied.3.024010.
https://arxiv.org/pdf/1409.2202.pdf.

[17] Shor, Peter W. "Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer." SIAM review 41.2 (1999):
303-332 https://arxiv.org/pdf/quant-ph/9508027.pdf.

[18] Landauer, Rolf. "Irreversibility and heat generation in the computing
process." IBM journal of research and development 5.3 (1961): 183-
191.
https://www.informationphilosopher.com/solutions/scientists/landauer/L
andauer-1961.pdf

[19] Böhm, Corrado, and Giuseppe Jacopini. "Flow diagrams, Turing
machines and languages with only two formation rules."
Communications of the ACM 9.5 (1966): 366-371.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.9119&rep
=rep1&type=pdf

[20] Fu, Xiang, et al. "eQASM: An executable quantum instruction set
architecture." 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2019.
https://arxiv.org/pdf/1808.02449.pdf

[21] Ruffino, Andrea, et al. "Integrated multiplexed microwave readout of
silicon quantum dots in a cryogenic CMOS chip." arXiv preprint
arXiv:2101.08295 (2021). https://arxiv.org/pdf/2101.08295.pdf.

[22] Tannu, Swamit S., et al. "Taming the Instruction Bandwidth of Quantum
Computers via Hardware-Managed Error Correction." 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2017. http://memlab.ece.gatech.edu/papers/MICRO_2017_1.pdf.

[23] Vandersypen, L. M. K., et al. "Interfacing spin qubits in quantum dots
and donors—hot, dense, and coherent." npj Quantum Information 3.1
(2017): 1-10. https://juser.fz-juelich.de/record/861563/files/s41534-017-
0038-y.pdf.

[24] Wikipedia. Three state logic. https://en.wikipedia.org/wiki/Three-
state_logic.

