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Abstract—This document presents an approach for scaling up 
quantum computers that makes use of novel principles for both 
the quantum and classical portions. For qubits requiring a 
cryogenic environment, the heat dissipation of the collocated 
classical portion is expected to limit scale up. This document 
adapts and applies classical reversible logic, which is more 
energy efficient than CMOS of equivalent function when 
operated in a cryogenic environment. While the advantages of 
reversible logic have been demonstrated in other contexts, this 
document makes novel adaptations for cryogenic operation at 
relevant speeds and describes a method of turning quantum 
algorithms into the cryogenic processor component of a quantum 
computer architecture. The simulation file with the key circuits 
has been released as open source, which can be used to generate 
plots that illustrate the key advances. These ideas can enable 
more capable quantum computers in addition to answering the 
question of whether reversible logic would enable more capable 
computers in general. The difference from past work being that 
the result is achieved for quantum computers where the original 
expectation had been microprocessors. 

Keywords— adiabatic computing; reversible computing; 
reversible logic; Adiabatic CMOS; PL/AL architecture; quantum 
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I. INTRODUCTION 

This document shows how to implement the cryogenic portion 
of a quantum computer’s classical control system using an 
adaptation of reversible logic, potentially reducing dissipation 
in the cryostat and allowing greater quantum computer scale 
up. 

Quantum and reversible computing were invented in the 
1980s and 1990s as the first two discoveries in a new field 
called the physics of computation [1, 2]. After 35 years of 
physics research, quantum computers demonstrated quantum 
supremacy [3] and created a societal expectation that quantum 
computers would become practical. 

Reversible computing, also called reversible logic, offers an 
energy efficiency improvement over CMOS due to energy 
recycling, as illustrated by the circuit simulations in Fig. 1. The 
curves show cumulative electrical energy flow in and out of 

chips of comparable behaviors implemented with (a) 
Complementary Metal Oxide Semiconductor (CMOS) and (b) 
reversible logic built from the same transistors. Since all 
energy entering a CMOS chip leaves as heat, the CMOS curve 
rises monotonically. However, the reversible circuit uses 
energy for a short time and then transfers most of it back to the 
power supply for recycling, dissipating only a second order 
portion in the cryostat. 

Starting in the 1990s, several research groups designed and 
tested chips fabricated using CMOS fabrication processes but 
using reversible logic circuits [4, 5, 6, 7, 8, 9, 10]. The new 
circuits were applied to the microprocessor architecture, 
creating reversible microprocessors [5, 7, 11]. Progress slowed 

Fig. 1. Summary of the energy efficiency advance. (a) Cumulative 
energy drawn from a power supply for a CMOS circuit driving a 10 
V square wave to a 100 pF capacitor. The curve rises by CV2 each 
time the signal transitions from 0 to 1. (b) A reversible circuit 
driving the same voltage to the same size capacitor—plus a pattern 
generator representative of a quantum circuit (note the pattern 
causes pulses to be present or absent). Each transition from 0 to 1 
draws ½CV2 (plus a small overhead) from the power supply, but the 
transition from 1 to 0 gives back ½CV2 (minus a small overhead). 
Curve (b) rises, but more slowly, representing higher energy 
efficiency. 

(a) CMOS driving 
100 pF load 

(b) Reversible PL/AL controller 
driving 100 pF load 
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when it became apparent that the resulting microprocessors 
would have to run slowly to achieve high energy efficiency and 
an essential component, the energy recycling power supply, 
would not be efficient enough without a technology 
breakthrough. 

Quantum computers are distinct from classical computers, 
yet now well enough understood to be scaled up. Quantum 
computer scale up is limited in part by excessive dissipation in 
the cryostat, at least for some qubit types [12, Fig. 4e]. This 
poses the question of whether the energy efficiency approach 
in reversible logic could adapted to quantum computers to 
facilitate scale up. If reversible logic is to be a solution, it 
would have to avoid the obstacles that thwarted reversible 
microprocessors. 

Qubit operations are slow, providing headroom on the 
speed issue. It has now become apparent that large-scale 
quantum computers will need to use quantum error correction 
[13]. Quantum error correction requires frequent quantum 
measurements, which are about 1,000× slower than CMOS 
gate operations and become the rate-limiting operation of a 
quantum computer. While slowing down a microprocessor 
clock by 1,000× cuts system throughput by the same factor, a 
classical control system running 1,000× slower (1 MHz) than a 
microprocessor (1 GHz) would naturally bridge the speed 
differential between quantum and classical operations and 
could be acceptable or even ideal. 

While the elusive energy recycling power supply is 
essential for room temperature reversible logic, its role in the 
powertrain can be filled by a cryogenic refrigerator [14, 15], 
given that one already present for another reason. 

A physical demonstration would be an appropriate initial 
step towards validating reversible logic for the role just 
discussed—yet these demonstrations occurred inadvertently in 
the 1990s [9]. While the reversible logic test chips mentioned 
above did not make a compelling argument for further 
development of a reversible microprocessor, application to 
quantum computers would require a reversible logic circuit in 
conjunction with a cryogenic refrigerator, not an energy 
recycling power supply. It turns out that the test chips were 
exactly what was needed to validate the quantum computer use 
case, even though the people involved did not realize it at the 
time. 

The next step, which is the purpose of this document, is to 
devise a strategy for building a quantum computer that allows 
the energy efficiency of cryogenic reversible logic to carry 
through to the quantum computer as a whole and allow greater 
scale up. 

This document will show a system design that includes a 
standard computer at room temperature plus a cryogenic 
processor based on reversible logic. These components would 
replace similarly named components in the PL/AL architecture 
[16], a known quantum architecture. 

This document will show how to replace the function of the 
standard computer and the cryogenic processor using a new 
approach that puts the complex and otherwise energy 
consuming functions into the standard computer at room 
temperature so the remaining functions performed in the 

cryogenic processor can use known or readily demonstrable 
reversible logic circuits with low dissipation. 

Using quantum error detection and correction as an 
example, this document shows how the ideas described above 
can be applied to any quantum algorithm. In summary, the 
quantum algorithm is first expressed as a flowchart. The boxes 
and diamonds of the flowchart are then replaced by reversible 
logic circuit schematics, with the arcs in the flowchart forming 
connections between the circuits. This yields a netlist that 
could be fed into a Computer Aided Design (CAD) tool and 
fabricated to create an integrated circuit. 

The circuit simulated in Fig. 1b is actually the central 
portion of a classical control system of a quantum computer, so 
reducing dissipation in the cryostat could permit more qubits 
and hence scale up. Shor’s quantum factoring algorithm [17] 
can factor a number in fewer steps than a conventional 
computer. This document builds on Shor’s algorithm, or any 
quantum algorithm, by devising a classical reversible logic 
circuit, which is essentially an algorithm, for controlling the 
quantum computer with less dissipation than CMOS. 
Combining these two ideas would allow a quantum computer 
to run algorithms with both fewer steps and less dissipation. 

At a higher level, this document extends Landauer’s 
concept of a “minimum heat dissipation typically on the order 
of kT for each irreversible operation” [18] to a system with 
multiple regions at different temperatures. This document ties 
Landauer’s physical concept to computer architecture by 
showing how to allocate calculations of different physical 
complexities, such as reversible and irreversible, to regions at 
different temperatures, and where those temperatures dictate 
different hardware options, in order to optimize the design. 

To foreshadow the result, the cryogenic processor is a data 
decompressor, similar to image decompressors in web 
browsers. The data decompressor takes on a role similar to a 
cache in a classical computing system. Neither a cache nor a 
data decompresser “compute,” but the roles of both are to 
alleviate an obstacle to scale up, specifically latency and heat. 
The phrase “reversible logic” also turns out to be a bit of an 
overstatement because the structure is almost entirely 
comprised of shift registers. Non-trivial reversible logic gates 
only appear in one place in this document, and it is just an 
optimization. 

II. THE SUBCIRCUIT SEQUENCE GRAPH OR FLOWCHART 

The synthesis process will be illustrated for a simple algorithm, 
yet can be applied to any algorithm that expands into a 
quantum gate sequence. 

Fig. 2 is an error detection and correction algorithm for the 
5-bit error correcting code designated [[5, 1, 3]]. In rough 
equivalence to a 5-bit byte in a classical computer, a quantum 
computer supporting the [[5, 1, 3]] code would perform 
operations on groups of 5-7 qubits at once. 

The top-level structure of the algorithm for checking a 5-bit 
codeword for an error and correcting it if found [13, p. 2 Error-
correction procedure] is: 

if (SXZZXI) fix_error    (1) 



else if (SIXZZX) fix_error 

else if (SXIXZZ) fix_error 

else if (SZXIXZ) fix_error, 

where SXZZXI performs verification or a syndrome check 
corresponding to the pattern XZZXI, returning true if there is 
error. The three other patterns like XZZXI are circular rotations 
of the symbols. 

For completeness, other algorithms require various forms 
of a looping construct, which would have the textual 
representation: 

while (Mcontinue) iteration,   (2) 

which repeats iteration while Mcontinue is true. 

This section will show how to create the graph in Fig. 2a 
that represents all the qubit gate sequences that algorithm (1) 
could possibly generate. The graph will be translated into a 
hardware schematic later in this document. 

Fig. 2a illustrates the range of primitive operations required 
for quantum error correction. The double-outlined block in the 
upper left represents the circuit in Fig. 2b that verifies the first 
of four check qubits, but does so in a way that also detects 
errors in the gates that perform the verification. This circuit has 
a typical sequence of state preparation, quantum gates, and 
quantum measurements. 

The process then undergoes what a classical computer 
would call a conditional branch using the module in Fig. 2d. If 
qubit measurements (M) report no error, the process continues 
by verifying the second check pattern, and so on. If all four 
checks along the top row succeed, the error check completes 
having found no errors. 

When one of the qubit measurements reveals an error, all 
four check qubits are verified by four single-outlined blocks 
shown in Fig. 2c. 

The information from all the measurements together will 
yield up to three qubit corrections designated Ui, Uj, and Uk, 
where each U is one of the four single-qubit gate operations X, 
Y, Z, or I (I means no correction) and i, j, and k identify which 
qubit receives the correction. 

The discussion above motivates what is called a subcircuit 
sequence graph in this document, which is an intermediate 
form in the synthesis process: 

 The graph is based on, at minimum, a set of 
universal quantum gates plus qubit reset and 
measurement. Beyond the minimum, the set may 
include separate operations for each input of a 
two-qubit gate (such as “CNOT control” and 
“CNOT target”) and composite operations (such 
as “Hadamard, one input of control-Z, Hadamard). 

 Boxes of functional type, using the terminology in 
[19] containing quantum subcircuits of the above. 

 Boxes of functional type containing parameterized 
single-qubit gate operations Ui where the 
operation type U and qubit identity i are 

determined by measurements. While not discussed 
further in this document, the approach is for the 
subcircuit graph in Fig. 2a, which was described 
as applying to 5-7 qubits at a time, to split into 
graphs for each qubit, yielding separate decisions 
for rotations by X and Z for each qubit. 

 Diamonds of predictive type, using the 
terminology in [19], that control which of several 
operations is to be carried out next based on the 
results of measurements. 

 A subcircuit graph comprises boxes and diamonds 
connected by arcs, which is commonly called a 
flowchart. The flowchart is equivalent to a textual 
representation containing if and while decision 
statements. 

Ref. [19] demonstrates equivalence between a flowchart and a 
Turing machine, yet this equivalence requires a stack. The 
subcircuit sequence graph in Fig. 2 deliberately excludes the 
decisions that control the diamonds. This is so the room-
temperature computer can provide the functionality of a stack, 
hence making the subcircuit sequence graph extremely general. 

A. The Prime-line/address-line architecture 

Fig. 3 illustrates the “Prime-Line/Address-Line architecture” or 
“PL/AL architecture” proposed for large-scale quantum 
computing [16, 20], where the cryogenic processor in Fig. 3a is 
the main topic of this document. The architecture is structured 

Fig. 2. Overall [[5, 1, 3]] correction algorithm is composed of (a) a 
subcircuit graph, (b) (c) syndrome extraction subcircuits, (d) 
diamond or crossover, and (e) correction module. 

(a) [[5, 1, 3]] error detection and correction with flags: 

XZZXI IXZZX XIXZZ ZXIXZ 

XZZXI 

XZZXI XZZXI 

U1U2U3 Z, Y, or Z on 
qubit n 

= = 

= = 
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 CMOS 

Reversible circuit  

 Top speed 

Fig. 4. Reversible transistor shift register. CMOS is  is flat at 
½CV2, reversible circuit  has slope 1 due to 1/ adiabatic 
scaling. The lines intersect at , about the top speed of CMOS. 
Both CMOS and reversible circuits slope upwards at low 
frequencies due to leakage. 

like a player piano plus a semi-independent qubit readout 
capability. 

The task of Fig. 3 is to expose each qubit to an analog 
waveform. The switch matrix in Fig. 3b fills the role of a piano 
keyboard for each qubit, combining analog prime-line 
waveforms in Fig. 3c, each equivalent to a piano note, into a 
time sequence defined by the cryogenic processor in Fig. 3a, 
equivalent to the moving paper roll controlling a player piano. 

Just as integers are composed of prime factors, Fig. 3c 
shows three representative prime-line waveforms, collectively 
called a prime-line bus [16]. The analog waveforms define 
operations, such as X, H, and control-Z, which are able to 
specify all possible behaviors of the qubits if combined in an 
appropriate time sequence. 

Currently, qubit readout involves complex signal 
processing that has only been demonstrated at room 
temperature, represented in Fig. 3d and e [21]. Similarly to 
[22], this document incorporates qubit readout through a 
subsystem that interfaces to room temperature equipment 
independently, returning information to the cryogenic 
processor in Fig. 3a. 

In analogy to a jukebox, the standard computer in Fig. 3e 
observes the readout of qubit state and selects which roll of 
music to play at a given time. The standard computer also 
executes the classical portion of an overall quantum 
application. 

The ideas in this document anticipate that designers will 
choose the prime-line waveforms in Fig. 3c in part to reduce 
dissipation in the cryostat. The prime-line waveforms should 

comprise a universal set of quantum gates, but 
there are many universal gate sets. Some 
quantum computer research groups consider 
many universal quantum gate sets and choose 
the one that has the best speed or accuracy for 
a given set of applications. This document 
goes a step further by allowing the designer to 
choose prime-line waveforms to reduce the 
speed of the cryogenic processor in Fig. 3a, 
thus reducing dissipation through the classical 
adiabatic principle. 

III. REVERSIBLE CIRCUIT SYNTHESIS 

This section describes reversible transistor 
circuits to the minimum level of detail 
required to understand the body of this 
document. Appendix A offers more detail. 

Reversible transistor circuits are 
classically adiabatic, meaning a circuit’s 
dissipation is proportional to clock rate – until 
the dissipation is so low that static dissipation 
dominates. The adiabatic circuits in this 
document use AC power-clocks with linear 
voltage ramps of duration , so adiabatic 
behavior is equivalent to the presence of a 1/ 
term in the circuit equations for dissipation. 

Circuit simulations in Fig. 4 compare 
energy per operation of a CMOS shift register with a reversible 
logic shift register created with the same transistors. 

The energy per operation of the CMOS circuit  is ½CV2 

“address-line bus” [16] 

(d) Measure- 
ment interface/ readout bus [16] 

(a) Cryogenic 
processor: 
FPGA [16], 
Microcoded 
Control 
Engine (MCE) 
[22], or 
reversible 
structure from 
this document 

(e) Signal 
processing 
apparatus and 
standard 
computer at 
room 
temperature 

(b) “switch matrix” [16] 

Fig. 3. “PL/AL architecture” [16] as redrawn for this document. (a) A cryogenic processor 
chooses which gate to apply to each qubit on each time step, the nature of this processor is 
the main topic of this document. (b) A switch matrix gates one prime line waveform to 
each qubit on each time step, where (c) the waveforms are generated at room temperature. 
(d) Measurement is performed by exposing qubits to waveforms generated at room 
temperature and routing the reflected signal back to room temperature. (e) At room 
temperature, signal processing apparatus processes the reflected signals, passing the digital 
measurement results to a standard room-temperature computer for management of high-
level activities. As shown by the circular arrow, the overall information flow is 
counterclockwise. 

(c) Room 
temperature 
prime-line 
waveform 
generators [16] 



irrespective of clock rate. 

However, the energy per operation of the reversible circuit 
 includes a downward line of slope -1 on a log-log scale. 

The straight lines above have slope 0 and 1, so they 
intersect. If the circuits have similar functions, the transistors 
are the same, and the supply voltages are the same, the two 
lines will intersect at about the top speed of CMOS. This 
implies that the energy advantage of the reversible circuit over 
CMOS is equal to the amount of slowdown from the 
intersection point , or about 1,000× for this application. 

The discussion above supports the conclusions of this 
document because the cryogenic processor in this document is 
composed entirely of shift registers operating at about position 
. However, Appendix A provides additional detail on 
implementation, references to material on logic circuits, 
operating points other than position , and theory that applies 
to other circuits that work similarly. 

A. Storing subcircuits in reversible shift registers 

The first step in the synthesis procedure is to create a place to 
store the subcircuits. It was noted by another author addressing 
this task that “the QECC microcode memory can be designed 
as FIFO” [22], which translates to the terminology in this 
document as “the PL/AL architecture’s quantum circuit 
memory can be implemented with a sequential-access 
memory.” 

A shift register is a sequential memory and is also the most 
basic reversible circuit in the literature, frequently used for 
defining logic families [4, 5, 6, 7, 8, 9] and as a test circuit for 
measuring [9] or simulating [10] dissipation. 

This document takes the straightforward approach of 
storing each subcircuit definition in a circular shift register as 
shown in Fig. 5. Since the switch matrix in Fig. 3b has 9 
switches, the shift registers holding the subcircuits in Fig. 2a 
will be 9 bits wide. Each circular shift register will have the 
exact length l needed to store the circuit specified in Fig. 2b or 
c, given the chosen prime-line encoding. 

If a shift register has length l, clocking the shift register l 
times will cause its entire contents to shift out its right side in 
the correct sequence to drive the switch matrix. Since the shift 
register is circular with period l, the data will be returned to its 
original position and can be reused. 

While reversible logic recycles energy, we need to consider 
whether or not the energy delivered to the switch matrix is also 
recycled. The creators of the PL/AL architecture used a matrix 
of High Electron Mobility Transistors (HEMTs) [16, Fig. 1] as 
switches. Each switch is controlled by a 300 mV signal in [16, 
Fig. 3], which is about the same as the operating voltage V 
used for the circuits in this document. However, the argument 
here applies to any voltage-controlled switch. 

As explained in Appendix A, reversible transistor circuits 
recycle energy stored in the capacitance C of electrical nodes 
carrying signals. In this case, the HEMT’s gate capacitance CL 
is in parallel with the circuit’s electrical node capacitance C, so 
the reversible circuit will naturally try to recycle the energy 
delivered to the switches. 

If the switch presents a large capacitance CL—such as a 
large HEMT or a remotely located switch with large 
interconnect capacitance—the load may cause I2R power 
dissipation in the transistors creating the signal. The dissipation 
will be quadratic in C+CL and may be undesirable. The remedy 
is to increase the transistor widths on either side of the bus. In 
the simulation associated with this document, the transistors 
are 4× wider on the path between the power-clock and the 
address line bus the circuit generating Fig. 1b. 

The design process described above is distinctly different 
from the one used in CMOS—and the difference is critical to 
energy efficiency. A CMOS designer confronted with Fig. 5 
would typically “improve” the design by inserting buffers and 
format converters into the address line bus. This would defeat 
energy recycling if applied to reversible logic, but CMOS does 
not recycle energy anyway. 

B. Clock enables 

The reversible circuit in Fig. 5 looks like a tantalizing start of a 
reversible classical control system, but when both shift 
registers are considered, one discovers there are no reversible 
circuits in the literature with either clock enables or bus 
interfaces. Fully adiabatic static circuits have been devised for 
these purposes and are summarized below to the extent 
necessary to support the remainder of this document. The 
circuits are also described, with circuit diagrams, in Appendix 
B [14] and reference implementations appear in the ngspice 
simulator input in Appendix C. 

The fully adiabatic clock enables in this document work 
differently than CMOS clock enables. CMOS clock enables 
leave the clock running but alter circuit’s logic so the circuit 
does not do anything. 

In contrast, a data-controlled clock for reversible logic halts 
at DC levels when not enabled and is identical to the main 
clock when enabled, as illustrated in Fig. 6a. The topmost trace 
is ̂0, the first phase of the main clock. The following 8 traces 
are data-enabled clocks (except for the bottommost green trace, 
which will be explained later). 

A data-controlled clock in Q2LAL, the reversible logic 
family developed for the purposes of this document, is created 
by augmenting a one-bit or 8-stage shift register. A set of 8 
data-controlled power-clocks are generated from four internal 
nodes of the shift register and four additional simple circuits 
connected to other internal nodes of the shift register. When a 
string of k 1 bits enter the shift register, all 8 power-clocks go 

Fig. 5. Reversible PL/AL based on shift register storage. The two 9-
bit wide shift registers can be imagined to hold the circuit 
descriptions for Fig. 1b and c. To execute Fig. 1b, the state machine 
enables the clock for a full rotation of the longer cyclic shift 
register. Likewise for the circuit in Fig. 1c and the shorter register.  

9-bit parallel shift register 

shorter shift register 
en 

en 
9 State 

machine 

address- 
line bus [16] 



through k cycles and then halt at DC levels. Fig. 6a shows the 
waveforms for k = 3. 

C. Fully adiabatic busses 

A data-controlled clock can be enhanced to drive a bus by 
adding one additional clock and its inverse (two signals). The 
bus interface is created by rewiring one internal node in the 
shift register to use this new clock in lieu of one of the original 
8 phases. The bottommost trace in Fig. 6a shows two traces 
that are the same when the clock is running, but the green bus 
control trace starts and stops one tick, or time , sooner than the 
other. 

The bus’s use in a system can be explained with reference 
to Fig. 5. A bus-interface shift register drives its output when 
the clock is enabled, going into a high-impedance state when 
the clock is disabled. The transition between driving and not 
driving is designed such that a series of shift registers can take 
turns driving the bus if exactly one shift register is enabled at 
all times. 

The sub circuit powered by a data-controlled clock has all 
the benefits of energy recycling when the clock is running. 
When the clock is stopped, the sub circuit essentially turns into 
a static memory, holding state while dissipating only leakage 
power. 

D. Advances 

While shift registers are ubiquitous in the reversible logic 
literature, Fig. 5 makes advances over standard reversible 
logic. 

 The reversible logic literature does not contain 
data-controlled clocks, meaning clocks run all the 
time. While the classical adiabatic principle can 
reduce the dissipation of logic, turning memories 
into low-dissipation logic still dissipates more than 
storing data in static circuits. The data-controlled 

clock provides a consistent way to implement both 
logic and memory with high energy efficiency. 

 If the function Fig. 5 were to be implemented with 
the reversible logic in the literature, a multiplexer 
would be required to select the output of one of 
the registers to become the address-line bus—and 
then demultiplex the data to preserve reversibility. 
Each multiplexer would include a tree of AND-
OR gates that would be vastly more complex than 
the bus interface circuit in Appendix B. 

 The reversible logic in the literature recovers 
energy from its own operation, yet the shift 
registers in Fig. 5 recover energy from the output 
load, which is not described in the literature. 

E. State machine and PL/AL architectural issues 

The next step in the synthesis process is to create the fully 
reversible state machine in Fig 5. This should be impossible 
under the theory of reversible logic because the state transition 
diagram is irreversible, but this obstacle is overcome by 
placing irreversible functions on the standard computer in Fig. 
3e. 

Fig. 2a shows a quantum computer performing error 
correction and then forgetting that it did so, which is 
irreversible. Specifically, symbols - identify points where 
the state transition function maps multiple states to the same 
successor state. 

Landauer wrote a seminal paper [18] on how a classical bit 
produces a minimum dissipation of the order of kT when it is 
“erased” or deleted. Taken at face value, Fig. 3 shows a 
continuous stream of bits flowing into the cryostat as it moves 
from Fig. 3e to a. While qubit measurement sends information 
out, there is no way to erase a bit by turning it into a qubit, 
leading to a buildup of bits in the cryostat that will have to be 
erased. 

While kT is very small, the minimum dissipation for 
transistor circuit to erase a bit is about ½CminVt

2, where Cmin is 
minimum node capacitance to hold a signal and Vt is the 
transistor’s threshold voltage [6, p. 91]—which is thousands of 
kT in today’s technologies. 

F. Externally controlled Fredkin gates 

The theoretical discussion of how to avoid dissipation due to 
bit erasure is beyond the scope of this document, but the 
argument is summarized below. 

We achieve the effect of sending data into the cryostat 
without dissipation through an externally controlled Fredkin 
gate, shown in Fig. 7a and b. For reference, a Fredkin gate has 
one control signal and two data signals. The data signals are 
swapped if the control is a 1, but the gate has no effect if the 
control is a 0. 

The standard design in Fig. 7a shows data being sent into 
the cryostat as voltage v(t) and back later as voltage v’(t) to be 
erased by the external system. This is perfectly legitimate 
under reversible logic theory, but would require two sets of 
wires and the cryogenic electronics would need to drive the 

Fig. 6. Simulated traces. See text for explanation, but essentially 
from top:  ̂ 0, ̂0-6, and then the superimposed traces of ̂7 and ̂x. 
This is followed by the CMOS reference and on the bottom, 3+ 
repetitions of the pattern 010 111 being transmitted to the address 
line bus. 

(a) Data-controlled clocks 

(b) CMOS 

V
 

(c) One bit of address line bus 



long cable out of the cryostat. The alternative design in Fig. 7b 
applies a single voltage v(t) = v’(t) to the cryogenic circuit. 
While more efficient, it does not follow the standard reversible 
logic electrical protocol and must be engineered from first 
principles. 

The Fredkin gate in Fig. 7b is implemented as the crossover 
in Fig. 2d, where the control signal D is allowed to transition 
only at the reset point of the reversible protocol. This 
synchronization is straightforward because the standard 
computer Fig. 3e generates both the reversible clocks and the 
control signals. 

The practical consequence is to route a 1 bit to one of two 
destinations, but the circuit does not add classical bits to the 
cryostat that must be erased with some minimum dissipation. 
While the system in the cryostat remains adiabatic, it is only 
reversible if the external system applies the time-reversed 
sequence of values to the Fredkin gate’s control. 

G. A one-hot state machine 

For purposes of exposition, Fig. 7c shows two reversible shift 
registers. Depending on whether the diamond structure sends 
signals straight through or crosses them over, the overall 
structure will behave as either two independent reversible shift 
registers or a single long one. The crossovers could be the 
same as Fig. 2d as long as the signal D only makes transitions 
when the electrical protocol is in the reset state. 

The state machine in Fig. 5 will be a shift register 
initialized with a single 1 bit. To explain the terminology, there 
is “one hot” bit, i. e. a 1, and the rest of the bits are 0. The 
position of the 1 bit defines the state. 

H. The synthesis step 

The logic synthesis process is based on shifting between two 
views of Fig. 2a. These views are the (1) subcircuit sequence 
graph, flowchart, or state machine description where the 
rectangles represent a state and (2) circuit diagram where 
rectangles represent shift register stages. The connection 
between these views is that when a shift register stage holds a 
1, the state machine is in the corresponding state. 

The rectangles and diamonds in Fig. 2a become the shift 
registers and crossovers in Fig. 7d, which is simply a 
reorientation of Fig. 7c to the form of an “if” statement in the 
error correction algorithm in Fig. 2a [13]. 

I. The function of the state machine 

The function of the state machine in Fig. 3a and Fig. 5 is to 
enable shift registers containing quantum gate patterns by 
turning on their clock. 

Say a gate pattern has n time steps, corresponding to an n-
stage shift register. 

If n = 1, the state machine’s shift register could be used as 
the shift register portion of a data controlled clock, so the shift 
register built into the state machine would drive the subcircuit 
definition onto the switching matrix directly. 

The circuit in Fig. 7e could be used where n > 1. The n 
single-stage shift registers create a n-cycle delay. The two 
CNOT gates turn a data controlled clock on for n cycles. 

In fact, a gate pattern of n time steps can be reduced to n 
gate patterns of one time step each, which avoids the need for 
CNOT gates. 

This document has been discussing “reversible logic,” but 
this CNOT gate is the only reference in this document to any 
reversible gate other than a non-inverting buffer—which is not 
normally considered logic. 

J. Advances 

The structure in Fig. 5 is recognizable as a data decompressor, 
which may represent an advance in a field that has repeatedly 
attempted to build a viable microprocessor. 

In the terminology of data compression, symbols are loaded 
into the circular shift registers for repeated use. The output is 
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Fig. 7. It is legal to send data into a reversible logic region and later 
send it out. (b) However, an externally controlled Fredkin gate is 
equivalent to immediately sending the data back, requiring only one 
wire. (c) Depending on whether the diamond-shaped modules 
connect wires straight through or cross over, the circuit comprises 
either one or two cyclic shift registers. (d) An algorithmic “if” 
statement invoking states in the lower shift register conditioned on 
qubit measurement data coming from room temperature. (e) A 
module that turns on the clock when the system is in any of the 
three states in the bottom row. 
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sequence of symbols, representing quantum subcircuits, 
specified by just the decisions in the flowchart. The decisions 
comprise a lot less information than, for example, storing the 
symbols in an array and specifying a sequence of array indices. 

A GIF image in a Web browser or a Zip file on a computer 
can represent the output of an arbitrarily complex calculation 
even though the GIF or Zip decompressor is simpler than a 
microprocessor. This is obvious because the complex 
calculation occurs someplace else and it is just the answer that 
gets put in the GIF or Zip file. 

What has been illustrated above is an architectural 
extension to Landauer’s concept of minimum energy. Practical 
refrigeration systems are always below 100% Carnot efficiency 
and practical logic devices always operate above Landauer’s 
minimum energy, so moving a calculation from one 
environment to another causes a change in the energy of the 
calculation and the cost to transmit data between 
environmentss—the latter including digital costs of 
compression and decompression, signal energy in data 
transmission, and heat leakage in cables. 

The subsystem just presented translates information 
between environments that differ in they way they treat energy 
and information. This is a new issue because all computers had 
been of the same type prior to the advent of quantum 
computers.  

This is analogous to a cache in a conventional computer 
that  translates information between environments that differ in 
the way they address device count and latency. 

K. Adiabatic multiplexing 

Crossovers using the circuit in Fig. 2d would require one or 
two wires into the cryostat per signal, but a multiplexing 
scheme [23] with adiabatic dissipation levels (i. e. RC/) could 
reduce the number of wires quadratically. 

Fig. 8a shows the baseline dissipation model for on-chip 
reversible transistor circuits. One side of a transistor is 
connected to a power-clock originating off chip. The transistor 
charges wiring capacitance CW plus load capacitance CL 
through a channel resistance Ron that is likely to be around 50 
k. Taking this as the baseline, the multiplexing circuit should 
have dissipation of the same order or lower. 

The DRAM-like circuit in Fig. 6b [23] can send data from a 
room-temperature system to a cryogenic reversible subsystem. 
The DRAM-like circuit will be driven by r analog or digital 
row wires and c digital column wires coming from room 
temperature, one of each shown. Since these wires are driven 
externally, the only dissipation would be due to the on-chip 
wire resistance, which will be low compared to 50 k and its 
dissipation can be neglected. The access transistor, equivalent 
to Ron when selected, could be located physically close to CL so 
the wire capacitance downstream of the access transistor will 
be small. This will permit CL to be charged with the same level 
of dissipation as an internal reversible logic signal. 

L. Interface to standard computer 

A complete interface to the standard computer is beyond the 
scope of this document, but can be summarized with reference 
to Fig. 9. 

Fig 9 shows the interface between the synthesized 
reversible logic and software on the standard computer. A state 
array and an AL-bus array in the memory of standard computer 
appear at the top. Below, the subcircuit graph in Fig. 2a has 
been linearized to show vertical alignment with entries in the 
arrays and the state machine’s initial state is indicated by a star. 

The functional connection starts with software maintaining 
the data in the arrays so they are a shadow copy of the state of 
the reversible logic. If the state machine in Fig. 5 has n states, 
state array will be of length n, where each entry represents a bit 
of the one-hot state register. Each bit could be represented as a 
0, 1, or X, where X represents the unpredictable value that 
appears at power up. 

The AL-bus array will also have length n, representing the 
AL-bus output when the state machine is the state with the 
same index, such as at points C and D. Each entry in the AL-
bus array could be an X if the register contents are 
uninitialized. The subcircuit definitions could be stored in the 
AL-bus array as well. 

Since the standard computer generates both the power-
clocks and decisions, the two arrays can be updated to maintain 
a shadow copy of the state on the hardware in the cryostat. 

While details are not included in this document, an 
algorithm would be created that resets the internal state after 
power-up through use of uninitialized X state symbols, shortest 
path algorithms to navigate the graph, and a limited set of 
multiplexed voltage drivers that set shift register contents like a 
SRAM cells. 

Power-up initialization completes when the one-hot state 
register is correctly set to the starred location in Fig. 9 and all 
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the shift register memory has been 
initialized to the proper subcircuits. 

With one exception, this 
document has been organized such 
that the clock could be turned on at 
this point and the quantum 
algorithm executed by via 
guidance from the standard 
computer at decision points. 

The exception is that the 
DRAM external drive could be 
called upon to simultaneously 
drive decision values that interfere 
due to a use of the same row or 
column or different data values. 
This situation can be alleviated by 
judicious allocation of decision 
values to positions in the crossbar. 
If conflicts still exist, the crossbar 
can set decision values early 
through use of a scheduling 
algorithm on the standard 
computer. 

IV. RESULTS 

The circuits in Fig. 5 have been simulated with Spice (ngspice) 
using input available as open source (details later), with the 
simulation output in Fig. 1 and Fig. 6. 

A. Functionality 

The trace in Fig. 6b is the comparison waveform generated by 
a CMOS inverter driving a 100 pF capacitor. The power 
consumption of the CMOS inverter creates Fig. 1a. 

The trace in Fig. 6c is one line of the address line bus, 
which drives the 100 pF capacitor. The circuit being simulated 
has two shift registers containing patterns 010 and 111. They 
are transmitted in an alternating sequence, so the bottom trace 
outputs to the address line bus three and a third repetitions of 
each pattern: 010 111 010 111 010 111 01  (with spaces 
inserted for visual convenience). 

B. Scaling 

The hypothesis put forth in the discussion related to Fig. 1 is 
that CMOS circuits would have constant energy per operation 
while reversible circuits would scale as O(1/). 

The curves at Fig. 4 point  should have a slope of 1 to 
the extent the hypothesis is correct. There are many curves near 
point , representing simulations with, for example, different 
substrate bias, and some have slope pretty close to 1. As far as 
the author knows, the irregularity near point  is due to the 
transistor operating points being outside normal CMOS 
operating conditions where Spice and the transistor models are 
not well tested. Debugging Spice at unusual operating points is 
currently designated as future work. 

Transistors can be described by equations and the equations 
analyzed for asymptotic dependence as though they were 

operation counts in an algorithm. This makes the hypothesis 
equivalent to saying that the transistor equations for CMOS 
and reversible circuits should have energy per operation O(1) 
and O(1/). 

Combining algorithms in computational complexity theory 
is equivalent to combining circuits. Since the entire controller 
in Fig. 5 is comprised of subcircuits where energy per 
operation scales as O(1/), the behavior of the whole circuit 
should scale as O(1/). 

Circuit simulation should reveal the asymptotic behavior of 
the circuit equations. The difference in slopes between Fig. 1a 
and b is about 15×, which is non-trivial although less than 
expected. This is in part due to the curve in Fig 1b including a 
simple controller whereas the curve in Fig. 1a is just an 
inverter. 

The open source ngspice simulator file includes that 
compares a more sophisticated reversible logic quantum 
computer controller  with a CMOS work-alike, yielding a 131× 
dissipation reduction. Appendix C has more detail. 

V. CONCLUSIONS 

Reversible microprocessors demonstrated a reduction in 
dissipation equal to the reduction in clock rate, but the 
reduction in throughput detracted from the increased energy 
efficiency and the overall approach was thwarted by the lack of 
an adequate energy recycling power supply. 

This document showed how to transform a quantum 
algorithm into a reversible transistor circuit for driving qubits. 
The reduction in the transistors’ clock rate is about the same as 
the speed difference between CMOS gates and qubit 
measurements, so it is benign, and the elusive energy-recycling 
power supply is not necessary due to cryogenic operation. 
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Thus, this document show how to apply reversible logic to 
an important application without further breakthroughs. 

The open source Spice (ngspice) simulator input described 
in Appendix C rigorously defines the circuits and shows a 
131× dissipation improvement at 1 MHz and 1/ dissipation. 

Thus, disaggregating the concept of “CMOS” into 
transistors and circuits, and switching to reversible circuits may 
reduce dissipation in the cryostat substantially. This will cut the 
user’s power bill and also reduce congestion in the cryostat, 
perhaps leading to larger quantum computers. 

The generalization of the concept above is a computing 
system with multiple subsystems at different temperatures, 
built from technologies with different computational 
properties, and connected by refrigerators with sub-Carnot 
efficiencies. To implement this type of computing system 
optimally, the designer would allocate computations and 
memory to different subsystems to minimize dissipation per 
unit of throughput. This document provides an example. 

This document showed that the structure in Fig. 3a, called a 
cryogenic processor [16] due to its location, is performing new 
information heat management function unique to quantum 
computers. The structure is in an environment where heat 
generation should be minimized and this document showed 
that it can be implemented with essentially no logic gates. The 
structure in this document is similar to a data compression 
system, yet it could be given an name related to its function – 
similarly to the way classical computing community named its 
memory interface a “cache.” 

APPENDIX A CRYOGENIC REVERSIBLE LOGIC USING 

TRANSISTORS 

This section compares CMOS, cryo CMOS, and cryogenic 
reversible logic all based on the same transistors. 

Cryogenic reversible logic has been considered previously 
[5, p. 93], but no refrigerated computing technology, reversible 
or not, has successfully competed with room temperature 
CMOS. 

However, qubits requiring cryogenic operation present a 
different decision tree. A quantum computer requiring 
cryogenic qubits will get its computational power from 
quantum speedup, not the classical control electronics, and the 
classical control system will need to accommodate. This 
creates a competition between cryogenic classical technologies. 
Cryo CMOS and classical Josephson junction logic are the 
incumbents, yet this document considers only cryo CMOS. 

A. Capacitor charging 

Most computing technologies use voltage-based signaling 
where dissipation is dominated by the energy required to 
charge the capacitance of the signal nodes. 

Fig. 10 compares the dissipation of two circuits charging an 
node in a multi-temperature system, extending the result to the 
wall-plug energy of the logic families using the circuits. 

As illustrated in Fig. 10a, CMOS dissipates E = ½CV2 
every time a voltage node switches, where C is the wire or 
node capacitance and V is the supply voltage. 

For cryo CMOS, the dissipation in the cryostat, indicated 
by the flame in the figure, must be multiplied by the 
refrigerator’s specific power PS and added to the dissipation. 
Specific power is the number of watts of wall-plug energy 
required to remove one watt from the chip. A heat sink has PS 
= 0 and a refrigerator cooling to 4 K has PS  1,000. 

Fig. 10b shows resistance R being divided into two series 
resistances R1 and R2, R1 + R2 = R, where R1 is outside the 
cryostat. The total energy drawn from the power supply must 
be the same because two resistors in series is just another 
resistor, but only R2 is in the cryostat and contributes to cooling 
overhead. 

The right side of Fig. 10 tallies the wall-plug energy 
consumption. Note that room temperature CMOS would win if 
it could compete. 

B. Ramped power-clocks leading to a logic family 

While the circuit in Fig. 10b is powered from the fixed voltage 
on the left, voltage enters the cryostat at the center point of the 
divider formed by R1 and R2. For a given charging time , the 
smallest dissipation in R2 occurs when the capacitor is charged 
at a constant current [5]. This requires R1 to be a variable 
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Fig. 10. (a) Charging a capacitor from a fixed voltage dissipates 
½CV2. If the heat has to be removed from 4 K with PS = 1,000× 
overhead (1,000 W/W), the total energy from the wall plug will be 
501CV2. (b) If we move R1 to room temperature, only the portion 
R2/(R1+R2) of the heat will flow through the refrigerator and incur 
the 1,000× overhead. If R1 = 10 R2, for example, this reduces overall 
power consumption and heat generated from 501 CV2 to about 46 
CV2. Resistor R1 could be the output transistor of a waveform 
generator, where it would vary with time (see text). (c) To establish 
context, reversible circuit families effectively vary R1 so the voltage 
entering the chip is a linear ramp. 
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resistance that creates a linear ramp at the center point between 
R1 and R2. 

If the voltage entering the cryostat is a fixed waveform, the 
voltage can be generated once and connected in parallel to 
many instances of R2 and C. Such a waveform is called an AC 
power-clock, illustrated in Fig. 10c. 

Power-clocks for reversible logic families have upward and 
downward sloping ramps as indicated in Fig. 10c. These logic 
families typically have 4-8 clocks that contain flat tops and 
bottoms. The multiple overlapping clocks allow signals to be 
processed by electrical protocols, such as reset-charge-
compute-reset, ultimately yielding a family of reversible gates. 

C. Quantifying the dissipation reduction 

The in-cryostat dissipation of the circuit in Fig. 10b driven by a 
ramp is E = 2R2C/ × ½CV2, for large , where  is the length 
of the ramp [5]. The reader will notice ½CV2 is common to the 
dissipation expressions for both CMOS and the adiabatic 
circuit, but the adiabatic circuit has the additional factor 
2R2C/, which can be considered an energy factor and is the 
reason for the 1/ dependence of energy on clock period. 

Note that this analysis only yields an approximate 
comparison because CMOS and reversible circuits are 
different. The reversible circuit is usually more complex, 
resulting in more gates and more dissipation than is predicted 
by this analysis. Irrespective of the number of gates, wiring 
capacitance depends on layout details, causing C to vary from 
one circuit to another.  

Fig. 1 plots the cumulative energy delivered to each circuit 
in Fig. 10, where the second circuit is driven by a power-clock 
similar to Fig. 10c. 

D. Adiabatic powertrain 

Sending power-clock waveforms from room temperature into 
the cryogenic environment without little distortion, noise, or 
heat leakage in the transmission lines requires a structure called 
a cryo-adiabatic powertrain [14]. 

E. Historical context of cryogenic reversible logic 

The programmatic impact of the cryo cooler can be explained 
with the help of Fig. 11. 

Of the external energy entering a reversible circuit, a 
portion 2R2C/ = (1  GL) is turned into heat and the remaining 
portion GL passes through and is available for recycling. GL is 
a sub unity power gain that could be 99.9%. The energy 
recycling power supply reorganizes energy into a the properly 
shaped waveform, but turns a portion (1  GP) into heat and 
passes portion GP to the circuit to augment the external energy. 
Thus, the external energy is recycled in amounts GLGP, GL

2GP
2, 

..., amplifying the external energy by the factor 1/(1  GLGP). 
Let us say the objective is to deliver ½CV2 to the circuit. This 
will require external energy in the amount of 

E1 = (1  GLGP) ½CV2. 

However, the portion (1  GL) of the ½CV2 delivered to the 
chip will be dissipated with overhead PS. This leads to 
additional external cooling power 

E2 = (1  GL) ½CV2 PS. 

Thus, the total external power is ER = E1 + E2 for the 
reversible circuit and EC = (1 + PS) ½CV2 for CMOS. 

This leads to a lower-is-better figure of merit 

ER/EC = 1 – GL(GP + PS)/(1 + PS). 

The equation above is remarkable because varying PS 
transforms it into recognizable and important forms. 

The original conceptualization of reversible logic had just 
one temperature, implying a passive cooler with a PS = 0. In 
this case the previous equation becomes  

ER/EC = 1 – GLGP at room temperature. 

Physical demonstrations in the 1990s measured GL values 
up to 99.9%, but GP lagged so the research projects concluded 
that higher efficiency energy recycling power supplies were a 
long-term research direction. 

Operating the circuit at progressively lower cryogenic 
temperature is equivalent to raising PS. In the limit as PS  , 

ER/EC = 1 – GL at a cryogenic temperature, 

essentially a high PS makes the problematic term GP term 
disappear. 

The physical demonstrations in the 1990s successfully 
demonstrated a GL values as high as 99.9%, albeit at room 
temperature. However, we now know that cooling CMOS has 
little effect on this type of circuit. Thus, the physical 
demonstrations of reversible logic in the 1990s yielded high 
enough values the GL parameter to validate the quantum use 
case, even though the experimenters did not know it at the 
time. 

APPENDIX B Q2LAL AND ENHANCEMENTS 
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Fig. 11. Power flow for reversible circuits. PS is the specific power of 
the refrigerator, PS = 0 for a no refrigeration. GL and GP are the sub-
unity power gain of the logic and energy recycling power supply, with 
guideline values of 99.9% and 95%. 
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This appendix explains data-controlled clocks and circuit 
enhancements for support of busses, both of which are 
necessary to the cryogenic processor in Fig. 5. These 
enhancements are explained in the context of the Quiet 2-Level 
Adiabatic Logic (Q2LAL) family, developed by the author for 
more stable operation in a cryogenic environment [14]. 

Fig. 12 shows Q2LAL’s 8-phase waveforms. The power-
clocks are divided into ticks of duration , the ramp time. The 
power-clocks can be labeled ̂0-7, with the circumflex (hat) 
accent indicating that the power-clock is a positive-going 

pulse. However, flipping a power-clock upside down yields the 
same waveform as the pulse four ticks ahead or behind. Thus, 
the power-clocks have the property that ̂i = ̌i+4 mod 8, with 
the caron (cup) accent indicating the waveform is a negative-
going pulse. 

Data signals follow a reversible electrical protocol. The 
signal starts at a resting or reset state of 0 V for one tick of 
duration . If the signal is a 1, it rises in one tick of duration , 
stays at V for five ticks and then ramps back to GND in the 
sixth tick. 

Fig. 13 illustrates dual-rail signaling. Each data connection 
driven by ̂i constitutes two wires designated Q̂i

(0) and Q̂i
(1). 

The base wire Q̂i
(0) has a pulse to V for a 1 as shown and a DC 

value of GND for a 0. The second rail is the opposite with a 
DC value of GND for a 1 and a pulse to V for a 0. 
Alternatively stated, the first rail carries signal Q̂ and the 
second rail carries Q̂. 

Fig. 14a illustrates the basic circuit building blocks. The 
transmission gate 
symbol represents 
a pFET and an 
nFET connected 
as shown and 
driven by 
electrically 
complementary 
signals Ŝ and Š. 
The dual-rail 
transmission gate 
uses the same 
symbol but 2-
conductor busses 
and a replication 
of the circuit. 

The circuit 
framework is 
illustrated in Fig. 
14b as a sequence 
of cycles 
comprising 
triangular 
adiabatic 
amplifiers and 
transmission 
gates. The relative 
phase numbers 
around a loop S1, 

Fig. 13. Dual-rail signal waveforms. The first rail pulses for 1 
and is a flat line for 0; the second rail is the opposite. Arithmetic 
on i is mod 8. 
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Fig. 15. (a) Adiabatic amplifiers for both rails, each based on 
data signals Ai-1 from the previous stage. (b) The helper signal 
can be generated once in an entire circuit from available 
clocks. 

̂2, 1, S2, ̂3, and 4 is always the same, yet subsequent loops 
repeat the pattern with the indices incrementing each time, mod 
8. The F (forward) and R (reverse) functions, such as F2 and 
R2, are can be used to implement reversible gates. 

Fig. 15a details the two rails of the adiabatic amplifier, 
which contains circuits for each of the two rails. Each of the 
two rails for phase i, Q̂i, is controlled by data signals from the 
previous phase Ai-1 and a signal či-1. 

Clamp signal či in Fig. 15b is generated by two 
transmission gates. The inputs to these transmission gates are 
just clock phases, making či independent of data. So, či can be 
generated once and used for more than one gate. 

The explanation above is specific to the Q2LAL logic 
family, yet the subsequent discussion applies to other 
reversible logic families as well, in part because it is 
implemented by novel clocking, not the circuit. 

F. Data-controlled clocks and bus interfaces 

Clocks ̂0-7 in Fig. 16b are solid lines in the shaded center of 
the diagram to show the clocks when running, but dashed lines 
on the left and right represent the clock levels when stopped. 
Building on the data-controlled clock waveforms in [14], this 
article introduces an additional clock ̂x and its electrical 
inverse ̌x, which starts and stops one tick or time  earlier than 
the others, as shown by the bent bottom of the shaded region. 

Fig. 16a is the circuit for an 8-phase section of a Q2LAL 
shift register. The subsequent discussion around Fig. 16 applies 
more generally because other fully reversible circuit families 
differ only by the clock waveforms and the signaling 
convention for data. 

G. The memory cell 

The center of Fig. 16b shows the clocks running for one 8-tick 
clock cycle, but the clock is stopped in the outer regions of the 
graph. 

The red circular arrow in Fig. 16a identifies an amplified 
conductive cycle when the clock is stopped, creating a memory 
cell. At this point, ̂0-3 are low and ̂4-7 are high. The reader 
will see that the clocks around the cycle, ̂5, 4, ̂6, and 7, all 
have high values. Signals ̂5 and ̂6 supply power to two 
adiabatic amplifiers and 4 and 7 cause two transmission 
gates to be turned on. 

H. The bus interface 

The red circle with a cross through the middle, ̂1, 0, ̂2, and 
3 has all low clocks indicating that there is no memory cell. 
However, ̂7 enables a transmission gate that drives A0. A0 is 
actively driven low when the clock is stopped because the 
drive voltage is determined by  ̂0, which is low at that point. 

As background information, a reversible shift registers of 
most any logic family cause the memory cell to migrate to the 
right as the clock phases proceed, see [7, 18]. 

I. Special clock x for busses  

However, the power-clock x in Fig. 16b allows the shift 
register to drive a reversible bus. Signal x is dual-rail 
comprising ̂x and its electrical inverse ̌x (not shown). The x 
waveform is identical to 7 when the clock is running but it 
turns on and off one tick earlier. 

Thus, replacing 7 with x at the location illustrated in Fig. 
16a will change the circuit’s behavior only when the clock is 
stopped. While 7 turns on the transmission gate that drives A0 
low when the clock is stopped, x will cause the transmission 
gate to be an open circuit and A0 will not be driven. 

Since the reversible logic literature assumes all clocks run 
all the time, Fig. 16a is just a shift register in accordance with 
reversible logic theory prior to this article, even when 7 is 
switched to x. 

However, signal x will put A0 into a floating state when 
the clock is stopped, allowing us to extend reversible logic 
theory with a circuit that drives a bus only when the clock is 
running. 

A CMOS tri-state [24] bus interface can drive a bus to the 0 
and 1 states, but also has a third state that does not drive the 
bus at all. A CMOS bus also has a design constraint that 
exactly one of the interfaces drives the bus at a time—except 
during a handoff period where one circuit stops driving and 
another starts. The handoff must be designed to avoid electrical 
conflicts, such as short circuits, that could result if two circuits 
attempted to drive the bus to different values at the same time. 
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Fig. 16. Data-controlled clock. (a) Q2LAL is static, meaning the clock can be stopped at any time. The objective in this circuit is to start and stop the 
clock at the beginning of the first phase or tick. However, this means the first four clocks will rest at GND and the second four at V. (b) Clocks ̂0-7 plus 
special clocks ̂x and its electrical inverse  ̌x for supporting busses. The first four data-controlled clocks ̂0-3 are just taps of existing signals. However, 
the others  ̂4-7 require the special circuit. (d) Augmented circuit shows  ̂x and ̌x need data signals from beyond the left edge of the circuit, suggesting a 
renumbering of phases. However, the diagram highlights the fact that data is used from only five of the eight phases, making three phases available 
where the data may be altered by logic in time for another, back-to-back, data-controlled clock (such as in a state machine). 
 

V 

Âi-5 

Âi-5 

 ̌i = ̂i 

 ̂i 

Âi-5 

 ̌i-1 

 ̌i+1 

 ̌ i+2 

 ̂i+2 
ĉi+3 

(c) Special circuit that clamps to V (b) Data-enabled clock waveforms, with ̂x; waveforms range GND to V 

(a) Previously described shift register with annotations 

(d) Data in shift register enables clocks 

A7 A1 A-1 

2 

 ̂0 
7 

 ̂1 
0 

 ̂1 
3 

 ̂2 

A0 

F0 F1 

R-1 R0 

A3 

4 

 ̂2 
1 

 ̂3 
2 

 ̂3 
5 

 ̂4 

A2 

F2 F3 

R1 R2 

A5 

6 

 ̂4 
3 

 ̂5 
4 

 ̂5 
7 

 ̂6 

A4 

F4 F5 

R3 R4 

0 

 ̂6 
5 

 ̂7 
6 

 ̂7 
1 

 ̂0 

A6 

F6 F7 

R5 R6 

1 

F-1 

 ̂0 

6 
 ̂7 

R-2 

 ̂2  ̂1  ̂0 

 ̌x 

 ̂x 

ckt. 
(c) 

ckt. 
(c) 

ckt. 
(c) 

ckt. 
(c) 

ckt. 
(c) 

 ̂3  ̂4  ̂5  ̂6  ̂7 

A-2 

 ̂4  ̂5  ̂6  ̂7 

A7 A1 A-1 

2 

̂0 
7 

 ̂1 
0 

 ̂1 
3 

 ̂2 

A0 

F0 F1 

R-1 R0 

A3 

4 

 ̂2 
1 

 ̂3 
2 

 ̂3 
5 

 ̂4 

A2 

F2 F3 

R1 R2 

A5 

6 

 ̂4 
3 

 ̂5 
4 

 ̂5 
7 

 ̂6 

A4 

F4 F5 

R3 R4 

0 

 ̂6 
5 

 ̂7 
6 

 ̂7 
1 

 ̂0 

A6 

F6 F7 

R5 R6 

x 
 

 ̂3 

 

 

  

Power notes: 
: 2 transistors in the adiabatic amplifier plus the pass gate must be wide 
: 2 transistors in the adiabatic amplifier must be wide 



First, let us consider why turning the clock on and off at 
different times violates the design rules in existing reversible 
logic theory [7, 14]. Leaving the clock off for a long period of 
time would let A0 float and device leakage could sometimes 
cause drift to a significant voltage. When the clock is 
subsequently turned on, the sudden discharge of this voltage 
could cause a current transient that could disrupt the circuit. 

However, two copies of the circuit in Fig. 16a can create a 
bus if one interface is driven by the clocks ̂0-7, ̂x, and ̌x, and 
another by clocks ̂0-7, ̂x, ̌x, where exactly one of clocks is 
turned on at each point in time. This would result in one shift 
register leaving data signals, such as A0, floating at exactly the 
times when another shift register drives them. As mentioned 
above, the voltage on A0 is low on both sides of the handoff, so 
there is no short circuit even during the handoff. Thus, the 
circuits in Fig. 16 create a bus based on a naturally extended 
set of reversible design rules. 

J. Data-enabled clock for a bus interface 

The circuit to generate the clock for each shift register is shown 
in Fig. 16c and d, which is an enhancement of the circuit in 
[14]. Shifting a 1 bit into both Fig. 16d and [14, Fig. 10c] at the 
A0 position will produce the solid waveforms in Fig. 16b, 
which are now called ̂0-7 and ̂0-7. Shifting in a 0 stops the 
clock, clamping the waveforms at GND and V. 

The new signal ̂x is already available in Fig. 16d, but its 
electrical inverse ̌x is dependent on a data signal and is thus 
not available as a copy of any existing signal ̂0-7. Thus, Fig. 
16d includes a fifth instance of the circuit in Fig. 16c. 

Fig. 16d has been drawn to make it visually evident that the 
clock relies on only data signals A2…A2 and makes no 
connection to the other Ai signals. The functions Fi and the 
corresponding functions Ri that reverse the computation must 
be the identity function for  2 < i < 2, i. e. they are just 
buffers, otherwise the shift register will either produce 
incorrect clock signals or not recover energy properly. 
However, the functions Fi and Ri for 3 < i < 5 are 
unconstrained and can be replaced by arbitrary reversible 
logic—such as the CNOT gates in Fig. 7e. 

Busses are used in computer architecture to connect many 
subsystems or distantly separated subsystems, so busses 
frequently present a heavy load, typically a capacitive load, 
that requires greater current handling capability. For the PL/AL 
architecture, this means some transistors in both the bus 
interface in Fig. 16a and the gated clocks driving that interface 
in Fig. 16d should be made wider, or some other 
accommodation to increase their drive capability. Fig. 16 
identifies these locations with . 

VI. APPENDIX C OPEN SOURCE SIMULATOR DECK 

The current version of this document has not been 
submitted for archival publication, so it may be updated. The 
following information was current when written. 

With the exception of Fig. 4, this document has been 
backed up by an ngspice simulator input deck. 

This deck comprises six files that each start with an Apache 
2.0 open-source license statement. The main file is called aa.cir 
and includes instructions in comment fields.  

The installation instructions suggest using ngspice version 
36 (because it has been tested with only that version). Gnuplot 
is needed, otherwise plots will be generated by the more 
limited ngspice built-in plot functions. The author uses 
Windows 10 and 11; there has been no testing under any other 
operating system. 

The installation instructions say the code will run with no 
additional files, but it defaults to a mode that generates only 
Fig. 1 and Fig. 6. 

For other simulations, the instructions indicate that the user 
must install BSIM models from (a) other places in the ngspice 
distribution, (b) the Sky130 open source development kit, or 
(c) obtain models from a source that is not publically disclosed. 

The distribution files contain a regression testing capability. 

The author has not created a permanent home for these 
files, but an interested reader is encouraged to check the 
following URLs: 

https://zettaflops.org/aa/ 

https://debenedictis.org/erik and search the page for a 
section on the “Adiabatic Analysis ngspice simulator.” 
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