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Progression of an Open Architecture: 
from Orion to Altair and LSS 

Abstract 
NASA has embarked on a very ambitious plan for space exploration over the next several decades.  The 
cornerstone of this activity is the Constellation Program.  Even with the retirement of the Space Shuttle and the 
NASA development budget growing from approximately $3.5 Billion to approximately $7 billion in 2011, this 
budget will require a different model for NASA implementation than was used on the Space Shuttle or the Space 
Station.  The Constellation “system of systems” that contains seven major elements must be implemented within 
approximately twice the budget that a single space station element was implemented.  Over the past decade, 
industry managers including NASA managers, have come to accept as axiomatic that the use of open systems 
reduces cost, decreases schedule, and eliminates risks to a program. However, the term, "open systems 
architecture" invokes a variety of interpretations. To some it implies no proprietary components. To others it 
implies adherence to documented standards. Still others see it as implying plug-and-play features.  Honeywell 
has worked with NASA and other customers over the last five years to understand the voice of the customer 
relating to the benefits of varying level of open architecture.  As Honeywell has developed the detailed 
architecture for the Orion vehicle, the team has strived to create an open architecture approach portable to 
Altair and beyond.  This paper/presentation details the open features of the 6th Generation architecture and the 
ongoing enhancements to the Orion in work to finalize an open system to proposed throughout the Constellation 
architecture.  In addition, the path to a real time computational platform useful throughout the Fault-Tolerant 
Spaceborne Computing community is extrapolated and discussed.  This paper concludes with observed 
interpretations of the meaning of "open systems architecture" and the benefits to NASA within the long-life 
Constellation Program 

Constellation Background 
Over the decade there has been an evolving 

vision for the future of the National Aeronautics and 
Space Administration (NASA) human space 
objectives.  The first step in this evolution was the 
Space Launch Initiative (SLI).  According to Art 
Stephenson, director of NASA's Marshall Space 
Flight Center, Huntsville, Ala., "The Space Launch 
Initiative (was) a comprehensive R&D effort that 
provides technology developments that dramatically 
increase the safety, reliability and affordability of 
space transportation systems.  The strategic goals of 
SLI were to develop concepts and the technologies 
to allow creation of a next-generation Reusable 
Launch Vehicle (RLV).  This RLV would be 
designed such to reduce the risk of loss of crew to 
approximately 1 in 10,000 missions and to lower the 
cost of delivering payloads to low-Earth orbit to less 
than $1,000 per pound.  In early 2003, the NASA 
refined their vision and funding to better support the 
SLI vision as shown in Figure 1.  As part of this 
change, the broad SLI was split to focus on both 
short term and long term solutions.  The short-term 
solution became know as the Orbital Space Plane 

(OSP) concept.  The OSP was to focus on a system 
capable of providing crew rescue from the 
International Space Station (ISS) as early as 2008 
and crew transfer in the 2010 time frame. 

 
Figure 1 – NASA 2003 Five Year Budget Plan 

The next evolution in the NASA manned space 
policy came on January 14, 2004 when President 
Bush announced the Exploration Systems vision as 
shown in Figure 2.  This policy presented three 
goals.  The first goal was to complete the 
International Space Station by 2010 and focus our 
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future research aboard the station on the long-term 
effects of space travel on human biology.  The 
second goal was to develop and test a new 
spacecraft, the Crew Exploration Vehicle, by 2008, 
and to conduct the first manned mission no later than 
2014.  The final goal was to return to the moon by 
2020, as the launching point for missions beyond.  
Included within these goals are the retirement of the 
Space Shuttle Fleet at the end of ISS complete and a 
series of robotic missions to the lunar surface, 
starting no later than 2008, to research and prepare 
for future human exploration.  The ultimate goal of 
the new vision is to embark on human missions to 
Mars and to worlds beyond.   

 
Figure 2 - Current NASA Space Exploration Vision 

Even now the mission goals and objectives are 
changing.  President Obama recently called for a 
review of the Constellation mission.  This review, as 
reported by multiple press reports was prompted as 
an examination mission goals and the ability to 
complete these missions within the projected cost 
and schedule.  The recent 2010 NASA budget has 
included substantial increases for both the Ares 1 
and the Orion projects, while postponing the 
financial decisions of the Altair and Lunar Surface 
Systems programs to the result of the Augustine 
Commision report. 

Throughout the evolution of the NASA space 
exploration vision, one requirement has remained 
constant; the need for a flexible and re-configurable 

computing infrastructure to host, control, and 
manage the systems that will enable the envisioned 
missions.  Throughout the evolution from SLI to 
project Constellation, the need for a computing 
platform has evolved from simple vehicle level 
avionics control to a system of systems control 
architecture for both transportation and habitats.  
Starting in 2000, Honeywell recognized that a 
simple flight computer (a then current research 
project) was not addressing the issues associated 
with advanced human rated systems.  In 2001, 
Honeywell took the first steps to develop the first 
advanced avionics system to address suitability of 
various approaches to meet the needs of an advanced 
human rated avionics system. 

The NASA goal for avionics systems was to 
have an affordable system, both acquisition and life 
cycle that was at least as reliable as the current 
shuttle.  In addition to simple vehicle control, the 
avionics platform must now host autonomous 
operation, enable system level operational 
reconfiguration, and support a higher level of 
Integrated System Health Management (ISHM).  
Due to longer mission times, all of these functions 
must be hosted with an ever-increasing demand for a 
composite of integrity and availability.  To meet the 
goals of the Constellation Program, the cost of the 
avionics platform, including hardware and software 
must be drastically reduced from the costs incurred 
by the Space Shuttle and ISS programs. 

The NASA vision for reducing the ultimate cost 
of the Constellation program was to rely heavily on 
Commercial off the Shelf (COTS) based systems to 
reduce the design costs of the advanced avionics 
systems.  The cost benefit of these systems was seen 
to exist in their open architecture, where multiple 
suppliers will compete with each other to keep the 
cost down.  There are several issues with this 
approach:  COST designs evolve every 18 months, 
requiring a large logistic effort throughout the life 
cycle, they require part replacement to meet the 
NASA radiation environment, and the nature of the 
design implementation eliminates the fault isolation 
zones in all previous spacecraft designs, thus making 
these COTS based systems far less reliable than the 
requirement of being as reliable as the Space Shuttle. 
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Open System Definition 
As noted by NASA in their desire for an open 

system, intuitively there are several apparent 
advantages to an open system architecture.  
Generally these advantages respond to problems that 
have plagued systems in the past.  Apparent benefits 
include solutions to problems associated with single 
suppliers, NRE costs, maintenance costs, and 
upgrade costs.  

Single Supplier. Open systems avoid the 
constraint of relying on a single supplier. Several 
risks are associated with a single supplier including 
the possibility of the supplier going out of business, 
the supplier increasing price due to their 
monopolistic position, and the supplier 
discontinuing support for older versions of a 
product.  

NRE Costs. Open systems appear to reduce 
development costs.  Using COTS components 
eliminates the need for new development. Open 
systems rely on the likelihood of multiple suppliers, 
fostering competition that leads to lower prices. 
Integration of COTS components are often handled 
by the suppliers, producing a list of compatible 
products for use on the project.  

Maintenance Costs. Open systems increase the 
prospect that there is a pool of experienced users, 
decreasing the need for training efforts.  Secondary 
support products such as development and 
maintenance tools are likely available as well.  
Support organizations, including supplier technical 
support, is often available for a yearly licensing fee.  

Upgrade Costs. Many of the advantages 
associated with development and maintenance costs 
associated with open systems apply to upgrade costs 
as well. Competition drives product enhancements 
by suppliers at low or no cost to the project.  

While all of these benefits seem intuitive, 
experience has shown that reality does not always 
match theory.  When decisions are made on open 
system principles, it is important that system 
architects select those practices that best meet their 
specific goals, while accounting for potential 
associated problems.  

Dimensions of Openness  
In system architectures, the definition of “open” 

is hazy at best. Some are more generally accepted 
than others, but none are universally acknowledged. 
Among the more common definitions are:  

• Documented Standards  
• Widely Used Standards  
• Non-Proprietary Interfaces  
• Plug and Play  
• Commercially Available End Items  
• Commercially Available Development 

Tools  
• Long Life Availability  
• Open Source Code for Software and 

Firmware  

In an attempt to reach the compromise between 
the desired COTS solution for an advanced avionics 
system and a solution that meets the actual 
requirements of affordability, availability, reliability, 
maintainability, and functionality while using 
available technology, Honeywell completed 
extensive research into aspects of “openness” that 
would result in meeting NASA’s needs and desires.  
For each category of open systems, there are both 
benefits and potential issues.  There is no universal 
approach to open architectures that is guaranteed to 
reduce cost or schedule. Each requirement driving 
toward increased openness should be carefully 
analyzed and a cost-benefit analysis performed.  
Only those open architectural principles that will 
truly result in decreased cost or schedule should be 
imposed on a project.  

The team of Honeywell senior systems 
engineers performing the analysis of open system 
architectural principles concluded that the following 
categories are most likely to produce significant 
savings and should be seriously considered when 
designing a new system:  

• Widely Used Standards  
• Non-Proprietary Interfaces  
• Commercially Available 
The details of this study are documented in 

“Open Systems Architecture - Both Boon and 
Bane”[1] (IEEE/AIAA 10.1109/DASC.2006.313746).  
While other categories may also produce significant 
savings on a case by case basis, generally they are 
less likely to be cost effective.  In all cases a serious 
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analysis should be performed to determine the 
optimal level of openness for each project. The 
bottom line is, open systems do not always provide 
cost or schedule relief, and in many cases cause 
increases over the life of the program.  

The Honeywell goal over the past decade has 
been to create an avionics system approach that used 
the best of “open architecture” and proven advanced 
approaches that result in the cost savings that NASA 
needs while not creating a proprietary approach that 
locks NASA into a single provider.  Honeywell 
believes that a valued NASA supplier can provide 
value in continuous execution of open system 
solutions, provided that those solutions truly meet 
the NASA goals and objectives.  Honeywell believes 
this because this is the commercial model for 
success that has been the mainstay of Honeywell 
business for the last forty years. 

IMA Definition 
At the simplest abstraction, the requirements for 

a future NASA advanced avionics system involve 
receiving sensor input, processing that data, and 
actuating effectors.  Ideally, this same unit would be 
the host for any autonomous activity, health 
management, and housekeeping functions.  To 
reduce life cycle costs, this “flat” architecture would 
employ commercial interfaces to all input and output 
and have the hardware completely de-coupled from 
the hosted software. 

To meet low initial acquisition costs demanded 
by the current NASA space exploration 5-year 
budget, and to meet the desire of low life cycle cost 
challenges, it is essential to rely heavily of existing 
commercial standards for hardware and software.  In 
fact, it would be ideal to use existing Commercial 
Off-The-Shelf hardware if feasible.  Unfortunately, 
as previously described herein, attempts to create 
high reliability systems using COTS equipment have 
failed to be successful.  To meet the desired NASA 
cost required to implement all the Constellation 
requirements (including technical, cost, and 
schedule), an advances avionics system are likely to 
include the following: 
1. A system that is expandable and/or re-configurable in 

the future 
2. A system that uses open architecture concepts to 

allow flexibility within the implementation 

3. An architecture that allows third party participation 
either in the development of the avionics hardware or 
at a future time 

4. A low cost system throughout the lifecycle - this 
implies low development cost, low integration cost, 
and future low cost of ownership 

5. Time & Space Partitioning and Fault Tolerant 
Middleware 

Honeywell has executed a multiyear project and 
adapt the best features of existing commercial 
systems to create a cost effective advanced avionics 
system architecture that looks, feels, and implements 
like the flat architecture with features that allow 
implementation using low-cost microprocessor-
based units providing the flexibility of a distributed 
data system. This implementation is an adaptation of 
the DARPA Fifth Generation System they branded 
Integrated Modular Avionics (from a presentation by 
Ron Szkody on 29 May 1996 to the Integrated 
Sensor System (ISS) Open System Architecture 
(OSA) Joint Task Force (sponsored by United States 
Air Force Wright Laboratory /AAST-30).  This 
system includes more than just the hardware.  The 
requirements also include the software components, 
tools, and processes necessary to effectively 
develop, deploy and maintain the system.  

This approach will meet the highest levels of 
integrity and availability at the lowest initial 
acquisition cost along with minimal cost of 
ownership and upgrade. 

A Backbone Designed for both Flexibility 
and Availability 
The key to ultimate flexibility and re-

configurability is to architect a system where all 
information, whether it be I/O data or 
computationally derived data, is available to every 
aspect of the data system.  The simplest method to 
achieve this goal is to implement a centralized 
system where all the data is in core memory 
available to the one and only processing unit.  This 
implementation meets the simplistic requirements 
for a computational previously described herein. The 
drawback is that this is a circa 1960 implementation 
which does not support the fault tolerance, 
scalability, and availability requirements of a 
modern system. 
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The alternative to this is to implement a system 
approach wherein distributed components are 
coupled together in an architecture that provides the 
advantages of a centralized system.  The key 
architectural element is the ability to make all the 
system data available to all of the distributed 
processing elements within the system through a 
carefully orchestrated sequence using a high 
integrity Backplane for single box systems, or 
through a Virtual Backplane™ for a multiple box 
system.  The simplistic realization of the Integrated 
System data architecture is shown in Figure 3.  As 
illustrated, the centralized computing engine is 
broken up into an arbitrary number of distributed 
computing engines that may or may not contain an 

interface to I/O.  I/O and ancillary functions such as 
communication and data storage can be made 
available throughout the system with or without the 
computational element.  Any of the compute 
elements can be assigned to execute any portion of 
the necessary functional applications. Using 
processes and tools, static configuration tables are 
generated that identify the assignment of 
applications to computing engines, the processor and 
memory resources assigned to each application, and 
the data movement between applications.  The 
underlying hardware/software infrastructure controls 
system operations and data movement between 
applications using these tables. 

 

 

Figure 3 - Virtual Backplane Implementation: the Virtual Backplane logically connects each unit, regardless of the 
physical implementation 

This architecture allows applications to be 
reconfigured to another element in the system by 
modifying the configuration tables.  An application 
does not require modification or re-certification to 
be moved from one element to another.  Each 
computing element contains a “shadow memory” 

which holds the memory image of the system.  The 
unique element of the Integrated System architecture 
is that this “shadow memory” need only contain the 
subset of system data required by the applications 
and I/O cards associated with the computing 
element.  This greatly reduces the amount of 
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memory required for a given element.  Again the 
system remains flexible because the memory 
assignment is contained in the Integrated System 
configuration tables. 

A key architectural concept known as a “Virtual 
Backplane” maximizes the benefits achieved from 
the use of common components.  A virtual 
backplane is a method for interfacing a variable 
number of components in such a way that it appears 
they are all peers.  The conceptual architecture, as 
previously shown in Figure 3, illustrates this 
scheme. Regardless of the physical architecture, all 
I/O data is available to any application as if the I/O 
interfaces were directly connected to the host 
processor.  In the example physical architecture 
shown, the virtual backplane is a method for 
combining the High Speed Data Bus and the Module 
Backplane in such a way that all data is available 
equally to applications running on any of the Single 
Board Computers (SBC).  This virtual backplane 
realization allows modules to be located at optimal 
sites throughout the system as needed without 
impacting software applications.  

This architecture also allows for chassis 
organization to be optimally defined to reduce 
weight and to allow local thermal issues to be 
considered in the architectural implementation.  
Additionally, new modules can be added for 
extended availability, increased redundancy, and/or 
increased processing and/or I/O capability.  This 
ability to add or remove modules with little impact 
to the existing architecture provides an approach that 
is easily scaled to meet program requirements.   The 
same basic architecture can control complex vehicle 
avionics systems (such as the CEV), be downscaled 
to address a CLV approach, reduce complexity of 
environmental control device interfaces, or even 
support small and simple exploration robots.  

Software and Hardware Abstraction 
As described above, every function (computing, 

I/O, communications) appears as a peer function to 
any other function.  This is the first key to creating 
an “Open Architecture” system.  Since the software 
is a peer to the I/O (implying that there is no 
dependency between these two functions), an open 

relationship is created between the hardware and 
software, thus implying that different organizations 
can complete the hardware and software.  This first 
“open feature” is associated with the modular nature 
of the architecture, a layered approach to system 
hardware and software provides the abstraction 
necessary to minimize the effect of system changes 
on user applications.  This layered approach 
provides a continuous spectrum of support ranging 
from direct interfaces between hardware components 
to application program interfaces accessed directly 
by user applications (shown in Figure 4).  

 
Figure 4 - Layered Design Scheme 

Using a layered approach in the design of the 
bus interface controller allows the interface to the 
physical data bus/backplane to be separated from the 
remainder of the layering scheme. Migration to 
alternative bus architectures, even to dissimilar 
communications schemes such as fiber optics and 
wireless architectures, is simplified by isolating the 
impact of the migration to a minimal number of 
layers. This holds true throughout the spectrum. For 
example, changes to the operating system affect only 
those layers that directly interface with the Real-
Time Operating System (RTOS). In general, the 
format of Application Program Interface (API) calls 
remain unchanged, isolating user applications from 
the affects of system modifications.  

With the addition of advanced techniques in 
Operating System implementation, this principal can 
be further enhanced.  Through use of an ARINC-653 
compatible Operating System, the above described 
isolation can be extended to a single software 
application.  This also means that each software 
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application can be a peer to other software 
applications as well as I/O and communication.  
Incorporation of the ARINC-653 OS into the 
architecture creates two open features: 

• Each software application is independent 
and interfaces only through a “highly used 
open standard API  call. 

• The Operating System itself is an open 
standard and available from multiple 
vendors.  A change from the Honeywell 
APEX OS to the Greenhill Integrity OS does 
not have any impact on any application or 
I/O within the system. 

The realization of this flexibility is embodied 
within the system middleware.  While this may seem 
a complex realization, this is work that has already 
been completed and is approaching 100 million 
hours of proven operation.  This middleware has 
successfully been ported from the National 29050 
processor in the 777 Aircraft Information 
Management System, to a custom enhanced 29050 
version within the AIMS 2, to the IBM 750FX flight 
computer in the Boeing 787.  This reusable 
middleware code is currently being ported to the 
750FX on the Constellation Orion spacecraft and is 
the baseline implementation for the Space Suit 
computer.  This continuous reuse demonstrates the 
commonality and cost savings that the NASA has 
been hoping to achieve. 

Time and Space Partitioning 
Through a combination of hardware, software, 

and operational tools, a single high-throughput 
computational platform may be partitioned into 
multiple virtual computers (shown in Figure 5).  
This partitioning occurs in four domains: memory 
space, computation time, I/O access, and backplane 
access. Each virtual computer appears as a dedicated 
resource to the associated software application, 
known as a partition. This scheme also supports 
multi-processing using multiple processors within 
the overall system.  Increased future processing 
requirements may be implemented within virtual 
computers on existing processors, or on newly added 
processors.  The real-time operating system portion 
of this scheme, known as ARINC-653, has gained 

wide acceptance recently through its use by a variety 
of COTS operating system vendors.  

 
Figure 5 – Full Time and Space Partitioning 

In the memory domain, each software partition 
is allocated a pre-defined range of memory 
resources. Based upon the needs of the software, the 
size and location of a partition's memory resources 
are allocated by the operational tools. A hardware 
Memory Management Unit (MMU) enforces access 
rights to the memory resources. Other partitions may 
read from allocated memory, but only the owner 
partition is granted write privileges. This scheme 
ensures that software and/or memory failures do not 
propagate to other partitions running on the same 
physical CPU. Temporary storage locations such as 
program registers are automatically stored by the 
operating system and software infrastructure when a 
context switch occurs.  

In the computation time domain, a partition's 
processor resource allocation is pre-determined by 
operational tools, based upon the computational 
requirements of the partition. Using the interrupt 
scheme of the host SBC, the operating 
system/middleware performs a context switch from 
one partition to the next according to the pre-defined 
schedule. Thus a partition is guaranteed sufficient 
computing resources based upon the partition's 
execution frame rate needs. The order of execution 
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between partitions is consistent within each 
execution frame.  

In the I/O access and backplane access 
domains, data flow is pre-determined by operational 
tools, based upon the needs of the various partitions.  
Operational tools convert the needs of various 
applications, along with a description of the physical 
architecture of the avionics system, into a set of 
bus/backplane access tables. These tables are used 
by a backplane interface controller and an I/O 
interface controller to control the movement of data 
in and out of the processor and I/O cards.  

Time and Space partitioning coordinates the 
data flow through the system with the scheduling of 
processor resources available to the applications. 
This scheme creates a highly deterministic, high-
reliability system. From the standpoint of an 
application, data is available in memory on the 
processor card when it is required, and data 
produced by the application is placed in local 
memory where the processor retrieves it for 
transmission to its source destination. The time-
based, table-driven nature of time and space 
partitioning produces an environment that is 
conducive to easy modification, upgrade, and 
enhancement.  

Generating a new set of tables and re-validation 
of the system interactions can accommodate a 
variety of modifications to the system. The operating 
system, software infrastructure, and any unaffected 
application source code remains unchanged.  

One of the key benefits of an IMA system is 
that the partitioning of a computer into multiple 
virtual computers is seamless. Properly 
implemented, no partition can:  

• Contaminate another's code, I/O, or data 
storage areas (space partitioning)  

• Consume shared processor resources to the 
exclusion of any other partition (time 
partitioning)  

• Consume I/O resources to the exclusion of 
any other partition (I/O partitioning)  

• Cause adverse affects to any other partition 
as a result of a hardware or software failure 
unique to that partition 

This architecture also enhances the overall 
processing platform reliability. A fault in a single 
hardware element affects only the partition(s) 
associated with that element. A hardware failure will 
not necessarily disable an entire Line-Replaceable 
Module (LRM). These factors allow a partition 
running on a single processor to be modified without 
requiring re-certification of other partitions running 
on the same processor. Thus, partitions that are 
subject to frequent modifications may be co-resident 
with relatively stable partitions without requiring 
superfluous re-verifications. Likewise, partitions 
with mixed criticality levels may be co-resident 
without requiring all partitions to be certified to the 
highest criticality level. This scheme is sufficiently 
mature and demonstrable that it has been certified by 
the Federal Aviation Administration (FAA) for 
commercial airlines, and by the military for a variety 
of aircraft.  

Fault Isolation Zones 
Fault handling is critical in any architecture that 

has the capability to adversely affect human life or 
mission success.  In addition to compensating for 
simple failures, a critical computer system must 
account for classic Byzantine fault conditions.  Table 
1 is generally accepted as accurately describing the 
number of redundant channels required to 
compensate for Byzantine fault conditions.  

Table 1 – Byzantine Fault Conditions 
Required 

Fault 
Tolerance 

Self Test 
Coverage 

Cross 
Channel 

Trust 

Number of 
Redundant 
Channels 

0 Faults N/A N/A ≥1 
 

1 Fault 
100% 

<100% 
<100% 

Truthful 
Truthful 

Lies* 

≥2 
≥3 
≥4 

2 
Sequential 
Faults** 

100% 
<100% 
<100% 

Truthful 
Truthful 

Lies* 

≥3 
≥4 
≥5 

2 Simul-
taneous 

Faults*** 

100% 
<100% 
<100% 

Truthful 
Truthful 

Lies* 

≥3 
≥5 
≥7  

* Classic Byzantine Fault: number of required channels is 
established by a formal proof 

** 1st failure removed before second failure occurs 
*** 1st failure not removed before second failure occurs 
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Through use of high integrity processors, 
coupled to a high integrity Virtual Backplane, a 
master-shadow redundancy scheme, and robust 
BIT/BITE capability, a system having 100% fault 
coverage and truthful cross-channel communications 
can be developed.  As indicated in Table 1, this 
combination results in the minimal number of 
required channels to compensate for fault conditions.  
There are many examples of high integrity 
processors within the Space community.  High 
integrity processors can be created but are not 
limited to using lock-step techniques, common-
monitor implementations, triple modular 
redundancy, and polynomial progression encoding 
techniques.  These techniques are not new to the 
Space industry; lock-step processers are used in the 
Space Shuttle Main Engine Controller (SSMEC) and 
the Atlas flight computer.  Polynomial progression 
encoding is used as the fail safe in the Shuttle 
Multiplexer/Demultiplexer within the shuttle 
avionics system. 

Fault Detection and Isolation.  Along with a 
sufficiently robust BIT/BITE capability, a high 
integrity step processor architecture can detect and 
isolate faults without requiring a cross-channel 
voting mechanism.  Honeywell has successfully 
demonstrated the viability of lock-step processing 
using a variety of implementations.  In all cases a 
SBC is divided in two with duplicate processors, 
memory, compare logic, and bus/backplane 
interfaces.  Each side contains the logic to enable 
output from the other side.  Both sides have to agree 
prior to outputting data.  If the clock speed is 
relatively slow, all processor bus transactions, 
memory accesses, and bus/backplane activity can be 
compared on a cycle-by-cycle basis.  With high-
speed systems, comparing data entering and leaving 
the SBC is sufficient to determine faulty conditions 
(see Figure 6).  Regardless of the specific 
implementation, Honeywell has used this 
architectural concept repeatedly to meet the FAA’s 
requirement of <10-9 chance of an undetected 
failure.  

 
Figure 6 – Simple Lock-step Architecture 

Fault Recovery 
  When the two sides of the SBC disagree, the 

associated LRM discontinues outputting data and 
attempts to correct the fault condition.  If the fault 
can be corrected, the LRM places itself back into 
service upon fault correction.  While the LRM is 
attempting to resolve the fault condition, another 
aspect of this integrated modular architecture assures 
uninterrupted system operation.  This aspect of the 
architecture is known as master-shadowing.  On a 
partition by partition basis (not LRM by LRM), the 
system architect may choose to provide one or more 
shadow partitions for any given partition.  These 
shadow partitions reside on separate LRMs and 
receive the same inputs as the master partition.  They 
perform the same calculations and generate the same 
outputs.  However, the shadow partitions monitor 
the virtual backplane to determine if the master has 
provided the output data, in which case the shadow 
does not output duplicate data.  However, if there is 
no data on the virtual backplane at the pre-scheduled 
interval, the shadow provides the output data.  This 
scheme is repeated for as many shadow partitions as 
the system architect determines are necessary, 
assuring uninterrupted system operation.  An 
alternate to master shadowing is to have each 
redundant partition place data on the Virtual 
Backplane at all times.  Other elements then operate 
on the first valid data.  All data will either be valid 
or non-existent as enforced by the high integrity 
processor or the high integrity Virtual backplane. 
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As previously discussed, current highly 
available COTS solutions are far less reliable than 
the shuttle implementation.  This is because they use 
parallel bus implementations between their 
functions.  Within the shuttle system, each 
processing element (e.g. General Purpose Computer) 
is connected through a serial line (Multiplex 
Interface Adapter Bus) to each I/O unit (MDM).  
Furthermore, within the MDM, each I/O card is 
connected to the internal controller through a 
separate serial line.  In each of these cases, a failure 
in a single I/O card will not propagate and disable an 
entire string within the redundant system.  Couple 
that with the fact that 64-bits of address and 32-bits 
of data are two magnitudes more likely to fail the 
system than a single serial line (or a serial pair) and 
the reliability difference is clear.  The advent of 
these fault isolation zones also enable an effective 
failure detection and isolation capability coupled 
with ISHM techniques.  This successful combination 
has resulted in the number of false failures detected 
to decrease from 50% in airplanes prior to the 777 to 
only 8% in the 777 (comparison of equal AIMS 
functions). 

Progression to Network Node 
Honeywell has observed a misconception 

within the NASA community relating to the IMA 
implementation.  This misconception is that the IMA 
system has a “Central Computer” like the Space 
Shuttle and is not a distributed system.  Nothing 
could be further than the truth.  This is natural 
misconception to the casual observer due to the 
highly visible examples within the commercial 
community and the Orion implementation.  The 
AIMS 777 computer is located in a centralized 
cabinet to facilitate maintenance of the aircraft.  As 
part of that design requirement, the inter-cabinet bus 
was only designed to drive the short distance within 
the cabinet.  In the Orion Vehicle Management 
Computer within the spacecraft, there are actually 
two high integrity processors and a low integrity 
communication processor located in a single chassis.  
This however, is not required within the architecture.  
The location of these three processors in a single 
enclosure is to facilitate the packaging at the capsule 
level.  They could have as easily been located in six 

separate chassis and have been located anywhere in 
the vehicle.  A progression of avionics concepts is 
shown in Figure 7.  Note the colors in the 
progression; the central computer is all one color, 
indicating a single complex function.  The 
distributed system has many boxes, each having a 
single function.  The integrated system has boxes 
with many colored functions within each box.  Each 
of the colored slices can be a single box or integrated 
into any numbers of chassis. 

≈ ≈

Centralized Computing System – Original 
digital avionics controls
were centralized with few fault 
containment zones

Federated Computing System –
Federated systems provided fault 
containment zones but increased interface 
complexity

Integrated Modular Computing System – IMA 
provides the best of
centralized and federated
systems

Vintage 1960s – 1970s

Vintage 1970s – 1980s

Cutting Edge 1990s –

 

Figure 7 -  Aircraft avionics have progressed from 
the centralized system to the DIMA 
"network node" system. 

 This technique is becoming prevalent within 
the commercial airline industry as evidenced by the 
findings of “Distributed IMA and DO-297: 
Architectural, communication and certification 
attributes”[2] (IEEE  10.1109/DASC.2008.4702769).  
This paper describes characteristics and the 
connection between the distributed architectural 
approach, its core communication system and the 
development and certification process.  Based on the 
attributes of the communication system and its open 
interfaces, a Distributed integrated modular avionics 
(DIMA) architectural approach provides safety-
critical and secure communication, distributed 
integration, hierarchical separation, partitioning and 
physical distribution in addition to IMA properties 
like flexibility. 

During the implementation of the Orion 
avionics architecture several architectural migrations 
were occurring driving the Honeywell base 
architecture to a network node configuration.  The 
term “network node” is intended to describe any 
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function within the DIMA system that can be 
attached to the Virtual Backplane.  The Orion 
avionics architecture is a DIMA implementation of a 
network node system as shown in Figure 8.  A 
demonstration of the Open Systems Architecture 
nature of the “network node” is the current activity 

within the current architecture.  The RIU, MBSU, 
and ECLSS DE Units are all being redistributed and 
implemented as multiple Power Data Unit (PDU) 
assemblies and the work being redistributed 
throughout the Lockheed Martin Orion team.
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Figure 8 -  Orion 606E Baseline as published in May 2008.  This demonstrates the DIMA "network node" 

implementation of the Orion avionics.

 
TTGbE Virtual Backplane 

To implement the Virtual Backplane in the 
Orion avionics system, Honeywell has 
recommended and the Lockheed Martin team along 
with the NASA has modified the high integrity 
Virtual Backplane to Time Triggered Gigabit 
Ethernet (TTGbE).  TTEthernet, developed through 
a joint agreement between TTTech and Honeywell is 
an extension of classical Ethernet with additional 
services to meet time-critical, deterministic or 
safety-relevant conditions. It is compatible to 
standard IEEE 802.3 Ethernet and integrates with 
other Ethernet networks. As TTEthernet supports 
communication among applications with various 

real-time and safety requirements over a network, 
three different message types are provided: 

• Time-triggered messages are sent over the 
network at predefined times and take precedence 
over all other message types. The occurrence, 
temporal delay and precision of time-triggered 
messages are predefined and guaranteed. The 
messages have as little delay on the network as 
possible and their temporal precision is as 
accurate as necessary. 
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• Rate-constrained messages are used for 
applications with less stringent determinism and 
real-time requirements. These messages 
guarantee that bandwidth is predefined for each 
application and delays and temporal deviations 
have defined limits.  Rate-constrained message 
types are compatible with AFDX. 

• Best-effort messages follow a method that is 
well-known in classical Ethernet networks. 
There is no guarantee whether and when these 
messages can be transmitted, what delays occur 
and if messages arrive at the recipient. Best-
effort messages use the remaining bandwidth of 
the network and have less priority than the other 
two types of messages. 

Spacewire – a simplified point to point 
Virtual Backplane 

As part of the open system nature of the DIMA, 
any part of the system can be changed out.  For the 
Space Suit program, only two high integrity 
processors, two I/O cards, and a communication 
node are required for the system.  Because of this 
simplicity and the need for very low power, it was 
decided to use a simple point to point 
communication in the Space Suit proposed 
implementation as shown in Figure 9. 

 
Figure 9 -  Simplified Space Wire point to point 

shows the open nature of the Virtual 
Backplane in the DIMA architecture. 

Communication Node 
As noted in the Orion Design, the DIMA 

architecture has been expanded to include a 
communication node.  This node utilizes a Standard 
Network Interface Controller (SNIC) along with a 
non-high integrity processing element to implement 
the Common Communication Adaptor (CCA) 
function within the Orion system.  As seen in Figure 
9, the CCA function is connected as a node through 
the point to point spacewire Virtual Backplane. 

Progression to Altair and Beyond 
As a progression to Altair and LSS 

implementation, Honeywell is making enhancements 
to improve the performance and make the entire 
DIMA system more open.  First and foremost, the 
Altair avionics must have a much smaller Size, 
Weight, and Power (SWaP) footprint than is 
currently being realized in the Orion 
implementation.  According to Lauri Hansen in an 
informal briefing, the Altair will need to be on the 
order of one tenth the SWaP of the Orion 
implementation.  The current efforts 2009-2010 are 
designed to continue to improve performance and 
openness in relationship to re-configurable systems, 
exploration of the miniaturization of the Self-
Checking Pair processor to support robotic and 
spacesuit applications, and to continue to explore the 
advancement, openness, and miniaturization of the 
Remote Interface Unit Controller.   

Re-configurability is a system concept NASA is 
requiring for their Exploration Systems of which 
CEV is but one element.  The reconfiguration goal is 
to demonstrate the concept of a dynamically re-
configurable backplane, with autonomous 
configuration demonstrated with the connection of 
two networks. 

Future space applications will require smaller 
and more flexible RIU designs that are fail-silent or 
fail-passive.  An RIU design that can be readily 
adapted to new applications at minimal additional 
cost will provide advantages to NASA.   This will 
require a controller design that provides the 
flexibility and throughput to handle a wide range of 
I/O types.  Also, noting that development and 
qualification of software is a significant cost driver, 
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it is desirable to maintain a controller design that is 
based on hardware only or which does not require 
the development of custom software for each 
application.  RIU locations used in the LDAC-1 
evaluation are shown in Figure 10. 

 

Figure 10 - LDAC-1 RIU location used in avionics 
evaluation 

The Honeywell self-checking pair processor 
which was developed for the 787 Flight Control 
Module (FCM) is the basis of the Orion Vehicle 
Control Module and provides a radiation tolerant 
reliable processing element.  The Constellation 
program has need for this kind of processing element 
to support robotics, lunar base facilities and 
spacesuit systems.  The advantage of having a 
common processing element allows efficient use of 
processor modules with units being swapped to 
support other operations when they are no longer 
needed in a current mode as well as providing spare 
parts which are available in case of emergencies.  
The current miniaturized concept is shown in Figure 
11.  Current efforts include both Multi-Chip Module 
(MCM) and System on Chip (Soc) investigations. 

MCM

SoC SoC

I
O
P

I
O
P

D SD S
(wrap)

D S D S
(wrap)

D S D S

D S D S Spacewire / PCIe

 

Figure 11 - System on a chip miniaturization 
concept currently in work 

In addition to efforts to miniaturize the main 
processor, it is necessary to improve the openness 
and create a reconfigurable/programmable standard 
set of I/O intended to meet the needs of Altair and 
beyond.  The goal is to create an RIU that is at least 
¼ the size of the same RIU implemented in current 
technology as shown in Figure 12. 

 

Figure 12 - The goal is to shrink the RIU from a 
6u220 form factor to a 3u160 form 
factor. 
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• Investigate a single chip solution for the 
RIU Controller 

• Include hooks associated with the ability to 
dynamically reconfigure the Virtual 
Backplane 

• Pursue adoption of more “open” hardware 
architecture including adoption of the high-
speed PCI-Express (PCIe) bus architecture 

• Develop conceptual specs for 4 standard I/O 
cards that can be used for a high percentage 
of RIU I/O signals 
 Analog Card 
 Digital Card 
 Solenoid Card (outside scope of this 

effort) 
 Programmable I/O Card 

• Based on such standard I/O building blocks, 
propose a conceptual design for a new 
universal RIU 

• Single chip solution for Orion NIC and RIU 
Switch 

• Investigate foundries capable of producing 
devices that meet space environmental 
requirements 

Productivity and Cost 
The advent of the DIMA system architecture 

can provide several elements of cost reduction for 
the NASA community, both Human Space related 
and extended into the satellite community.  The most 
proven concept within the DIMA system is cost 
savings resulting from reduction in retest costs.  
Each partition in the system is stand alone and does 
not need recertification as the platform is upgraded.  
A specific example of this is that the application 
software from the 777 to the double speed 
redesigned hardware for the 777 Extended Range 
airplane was 98% reused without modification.  The 
DIMA architecture also provides savings in software 
and integration.  The full comparison of a DIMA 
system compared to a federated (distributed) system 
is shown in Figure 13. 

Real World Comparison of Development Costs

 
Figure 13 - Historic comparison for DIMA costs for 

development and production showing 
the cost savings associated with 
advanced architectures. 

There is also cost avoidance by using common 
building blocks.  Each element of the DIMA 
“network node” implementation is interchangeable 
(and replacable by 3rd party in the future). An 
example of cost savings associated with reuse of 
common building blocks is shown in Figure 14. 

IMA Forces this level of commanality within the system

Reductions in NRE, Risk, Schedule, and Life Cycle Cost 
vary from 5% to 30% or higher depending on 

commonality

Processor  Family

Processor and Board Support S/W

S/W Development Environment & Design Tools

Integration Infrastructure

System Bus

I/O Integration (cPCI)

Architecture

Industry Standards i.e. ARINC 653

Middleware

Non‐recurring 

Estimated

Savings

Operational 
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5%

10%

20%

30%
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Design

Reuse

Technology 
Dependent

Long life

Cycle

Standards

Technology

Independent

√

√

√

Optional

√

√Optional

Optional

Optional

√

 
Figure 14 – Commonality is one of the goals of an 

open system.  Each element can be 
reused to reduce cost. 
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