

S65-5000-20-0

Progression of an Open Architecture:
from Orion to Altair and LSS

Mitch Fletcher

Chief Systems Engineer
Human Space Business Segment

Honeywell, International
Defense & Space Electronics Systems - Glendale

19019 North 59th Avenue, Glendale AZ 85308
PO Box 52199, Phoenix AZ 85072-12199

Phone: 602-561-3158
FAX: 602-561-3076

E-mail: mitch.fletcher@honeywell.com

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 2

Progression of an Open Architecture:
from Orion to Altair and LSS

Abstract
NASA has embarked on a very ambitious plan for space exploration over the next several decades. The
cornerstone of this activity is the Constellation Program. Even with the retirement of the Space Shuttle and the
NASA development budget growing from approximately $3.5 Billion to approximately $7 billion in 2011, this
budget will require a different model for NASA implementation than was used on the Space Shuttle or the Space
Station. The Constellation “system of systems” that contains seven major elements must be implemented within
approximately twice the budget that a single space station element was implemented. Over the past decade,
industry managers including NASA managers, have come to accept as axiomatic that the use of open systems
reduces cost, decreases schedule, and eliminates risks to a program. However, the term, "open systems
architecture" invokes a variety of interpretations. To some it implies no proprietary components. To others it
implies adherence to documented standards. Still others see it as implying plug-and-play features. Honeywell
has worked with NASA and other customers over the last five years to understand the voice of the customer
relating to the benefits of varying level of open architecture. As Honeywell has developed the detailed
architecture for the Orion vehicle, the team has strived to create an open architecture approach portable to
Altair and beyond. This paper/presentation details the open features of the 6th Generation architecture and the
ongoing enhancements to the Orion in work to finalize an open system to proposed throughout the Constellation
architecture. In addition, the path to a real time computational platform useful throughout the Fault-Tolerant
Spaceborne Computing community is extrapolated and discussed. This paper concludes with observed
interpretations of the meaning of "open systems architecture" and the benefits to NASA within the long-life
Constellation Program

Constellation Background
Over the decade there has been an evolving

vision for the future of the National Aeronautics and
Space Administration (NASA) human space
objectives. The first step in this evolution was the
Space Launch Initiative (SLI). According to Art
Stephenson, director of NASA's Marshall Space
Flight Center, Huntsville, Ala., "The Space Launch
Initiative (was) a comprehensive R&D effort that
provides technology developments that dramatically
increase the safety, reliability and affordability of
space transportation systems. The strategic goals of
SLI were to develop concepts and the technologies
to allow creation of a next-generation Reusable
Launch Vehicle (RLV). This RLV would be
designed such to reduce the risk of loss of crew to
approximately 1 in 10,000 missions and to lower the
cost of delivering payloads to low-Earth orbit to less
than $1,000 per pound. In early 2003, the NASA
refined their vision and funding to better support the
SLI vision as shown in Figure 1. As part of this
change, the broad SLI was split to focus on both
short term and long term solutions. The short-term
solution became know as the Orbital Space Plane

(OSP) concept. The OSP was to focus on a system
capable of providing crew rescue from the
International Space Station (ISS) as early as 2008
and crew transfer in the 2010 time frame.

Figure 1 – NASA 2003 Five Year Budget Plan

The next evolution in the NASA manned space
policy came on January 14, 2004 when President
Bush announced the Exploration Systems vision as
shown in Figure 2. This policy presented three
goals. The first goal was to complete the
International Space Station by 2010 and focus our

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 3

future research aboard the station on the long-term
effects of space travel on human biology. The
second goal was to develop and test a new
spacecraft, the Crew Exploration Vehicle, by 2008,
and to conduct the first manned mission no later than
2014. The final goal was to return to the moon by
2020, as the launching point for missions beyond.
Included within these goals are the retirement of the
Space Shuttle Fleet at the end of ISS complete and a
series of robotic missions to the lunar surface,
starting no later than 2008, to research and prepare
for future human exploration. The ultimate goal of
the new vision is to embark on human missions to
Mars and to worlds beyond.

Figure 2 - Current NASA Space Exploration Vision

Even now the mission goals and objectives are
changing. President Obama recently called for a
review of the Constellation mission. This review, as
reported by multiple press reports was prompted as
an examination mission goals and the ability to
complete these missions within the projected cost
and schedule. The recent 2010 NASA budget has
included substantial increases for both the Ares 1
and the Orion projects, while postponing the
financial decisions of the Altair and Lunar Surface
Systems programs to the result of the Augustine
Commision report.

Throughout the evolution of the NASA space
exploration vision, one requirement has remained
constant; the need for a flexible and re-configurable

computing infrastructure to host, control, and
manage the systems that will enable the envisioned
missions. Throughout the evolution from SLI to
project Constellation, the need for a computing
platform has evolved from simple vehicle level
avionics control to a system of systems control
architecture for both transportation and habitats.
Starting in 2000, Honeywell recognized that a
simple flight computer (a then current research
project) was not addressing the issues associated
with advanced human rated systems. In 2001,
Honeywell took the first steps to develop the first
advanced avionics system to address suitability of
various approaches to meet the needs of an advanced
human rated avionics system.

The NASA goal for avionics systems was to
have an affordable system, both acquisition and life
cycle that was at least as reliable as the current
shuttle. In addition to simple vehicle control, the
avionics platform must now host autonomous
operation, enable system level operational
reconfiguration, and support a higher level of
Integrated System Health Management (ISHM).
Due to longer mission times, all of these functions
must be hosted with an ever-increasing demand for a
composite of integrity and availability. To meet the
goals of the Constellation Program, the cost of the
avionics platform, including hardware and software
must be drastically reduced from the costs incurred
by the Space Shuttle and ISS programs.

The NASA vision for reducing the ultimate cost
of the Constellation program was to rely heavily on
Commercial off the Shelf (COTS) based systems to
reduce the design costs of the advanced avionics
systems. The cost benefit of these systems was seen
to exist in their open architecture, where multiple
suppliers will compete with each other to keep the
cost down. There are several issues with this
approach: COST designs evolve every 18 months,
requiring a large logistic effort throughout the life
cycle, they require part replacement to meet the
NASA radiation environment, and the nature of the
design implementation eliminates the fault isolation
zones in all previous spacecraft designs, thus making
these COTS based systems far less reliable than the
requirement of being as reliable as the Space Shuttle.

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 4

Open System Definition
As noted by NASA in their desire for an open

system, intuitively there are several apparent
advantages to an open system architecture.
Generally these advantages respond to problems that
have plagued systems in the past. Apparent benefits
include solutions to problems associated with single
suppliers, NRE costs, maintenance costs, and
upgrade costs.

Single Supplier. Open systems avoid the
constraint of relying on a single supplier. Several
risks are associated with a single supplier including
the possibility of the supplier going out of business,
the supplier increasing price due to their
monopolistic position, and the supplier
discontinuing support for older versions of a
product.

NRE Costs. Open systems appear to reduce
development costs. Using COTS components
eliminates the need for new development. Open
systems rely on the likelihood of multiple suppliers,
fostering competition that leads to lower prices.
Integration of COTS components are often handled
by the suppliers, producing a list of compatible
products for use on the project.

Maintenance Costs. Open systems increase the
prospect that there is a pool of experienced users,
decreasing the need for training efforts. Secondary
support products such as development and
maintenance tools are likely available as well.
Support organizations, including supplier technical
support, is often available for a yearly licensing fee.

Upgrade Costs. Many of the advantages
associated with development and maintenance costs
associated with open systems apply to upgrade costs
as well. Competition drives product enhancements
by suppliers at low or no cost to the project.

While all of these benefits seem intuitive,
experience has shown that reality does not always
match theory. When decisions are made on open
system principles, it is important that system
architects select those practices that best meet their
specific goals, while accounting for potential
associated problems.

Dimensions of Openness
In system architectures, the definition of “open”

is hazy at best. Some are more generally accepted
than others, but none are universally acknowledged.
Among the more common definitions are:

• Documented Standards
• Widely Used Standards
• Non-Proprietary Interfaces
• Plug and Play
• Commercially Available End Items
• Commercially Available Development

Tools
• Long Life Availability
• Open Source Code for Software and

Firmware

In an attempt to reach the compromise between
the desired COTS solution for an advanced avionics
system and a solution that meets the actual
requirements of affordability, availability, reliability,
maintainability, and functionality while using
available technology, Honeywell completed
extensive research into aspects of “openness” that
would result in meeting NASA’s needs and desires.
For each category of open systems, there are both
benefits and potential issues. There is no universal
approach to open architectures that is guaranteed to
reduce cost or schedule. Each requirement driving
toward increased openness should be carefully
analyzed and a cost-benefit analysis performed.
Only those open architectural principles that will
truly result in decreased cost or schedule should be
imposed on a project.

The team of Honeywell senior systems
engineers performing the analysis of open system
architectural principles concluded that the following
categories are most likely to produce significant
savings and should be seriously considered when
designing a new system:

• Widely Used Standards
• Non-Proprietary Interfaces
• Commercially Available
The details of this study are documented in

“Open Systems Architecture - Both Boon and
Bane”[1] (IEEE/AIAA 10.1109/DASC.2006.313746).
While other categories may also produce significant
savings on a case by case basis, generally they are
less likely to be cost effective. In all cases a serious

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 5

analysis should be performed to determine the
optimal level of openness for each project. The
bottom line is, open systems do not always provide
cost or schedule relief, and in many cases cause
increases over the life of the program.

The Honeywell goal over the past decade has
been to create an avionics system approach that used
the best of “open architecture” and proven advanced
approaches that result in the cost savings that NASA
needs while not creating a proprietary approach that
locks NASA into a single provider. Honeywell
believes that a valued NASA supplier can provide
value in continuous execution of open system
solutions, provided that those solutions truly meet
the NASA goals and objectives. Honeywell believes
this because this is the commercial model for
success that has been the mainstay of Honeywell
business for the last forty years.

IMA Definition
At the simplest abstraction, the requirements for

a future NASA advanced avionics system involve
receiving sensor input, processing that data, and
actuating effectors. Ideally, this same unit would be
the host for any autonomous activity, health
management, and housekeeping functions. To
reduce life cycle costs, this “flat” architecture would
employ commercial interfaces to all input and output
and have the hardware completely de-coupled from
the hosted software.

To meet low initial acquisition costs demanded
by the current NASA space exploration 5-year
budget, and to meet the desire of low life cycle cost
challenges, it is essential to rely heavily of existing
commercial standards for hardware and software. In
fact, it would be ideal to use existing Commercial
Off-The-Shelf hardware if feasible. Unfortunately,
as previously described herein, attempts to create
high reliability systems using COTS equipment have
failed to be successful. To meet the desired NASA
cost required to implement all the Constellation
requirements (including technical, cost, and
schedule), an advances avionics system are likely to
include the following:
1. A system that is expandable and/or re-configurable in

the future
2. A system that uses open architecture concepts to

allow flexibility within the implementation

3. An architecture that allows third party participation
either in the development of the avionics hardware or
at a future time

4. A low cost system throughout the lifecycle - this
implies low development cost, low integration cost,
and future low cost of ownership

5. Time & Space Partitioning and Fault Tolerant
Middleware

Honeywell has executed a multiyear project and
adapt the best features of existing commercial
systems to create a cost effective advanced avionics
system architecture that looks, feels, and implements
like the flat architecture with features that allow
implementation using low-cost microprocessor-
based units providing the flexibility of a distributed
data system. This implementation is an adaptation of
the DARPA Fifth Generation System they branded
Integrated Modular Avionics (from a presentation by
Ron Szkody on 29 May 1996 to the Integrated
Sensor System (ISS) Open System Architecture
(OSA) Joint Task Force (sponsored by United States
Air Force Wright Laboratory /AAST-30). This
system includes more than just the hardware. The
requirements also include the software components,
tools, and processes necessary to effectively
develop, deploy and maintain the system.

This approach will meet the highest levels of
integrity and availability at the lowest initial
acquisition cost along with minimal cost of
ownership and upgrade.

A Backbone Designed for both Flexibility
and Availability
The key to ultimate flexibility and re-

configurability is to architect a system where all
information, whether it be I/O data or
computationally derived data, is available to every
aspect of the data system. The simplest method to
achieve this goal is to implement a centralized
system where all the data is in core memory
available to the one and only processing unit. This
implementation meets the simplistic requirements
for a computational previously described herein. The
drawback is that this is a circa 1960 implementation
which does not support the fault tolerance,
scalability, and availability requirements of a
modern system.

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 6

The alternative to this is to implement a system
approach wherein distributed components are
coupled together in an architecture that provides the
advantages of a centralized system. The key
architectural element is the ability to make all the
system data available to all of the distributed
processing elements within the system through a
carefully orchestrated sequence using a high
integrity Backplane for single box systems, or
through a Virtual Backplane™ for a multiple box
system. The simplistic realization of the Integrated
System data architecture is shown in Figure 3. As
illustrated, the centralized computing engine is
broken up into an arbitrary number of distributed
computing engines that may or may not contain an

interface to I/O. I/O and ancillary functions such as
communication and data storage can be made
available throughout the system with or without the
computational element. Any of the compute
elements can be assigned to execute any portion of
the necessary functional applications. Using
processes and tools, static configuration tables are
generated that identify the assignment of
applications to computing engines, the processor and
memory resources assigned to each application, and
the data movement between applications. The
underlying hardware/software infrastructure controls
system operations and data movement between
applications using these tables.

Figure 3 - Virtual Backplane Implementation: the Virtual Backplane logically connects each unit, regardless of the
physical implementation

This architecture allows applications to be
reconfigured to another element in the system by
modifying the configuration tables. An application
does not require modification or re-certification to
be moved from one element to another. Each
computing element contains a “shadow memory”

which holds the memory image of the system. The
unique element of the Integrated System architecture
is that this “shadow memory” need only contain the
subset of system data required by the applications
and I/O cards associated with the computing
element. This greatly reduces the amount of

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 7

memory required for a given element. Again the
system remains flexible because the memory
assignment is contained in the Integrated System
configuration tables.

A key architectural concept known as a “Virtual
Backplane” maximizes the benefits achieved from
the use of common components. A virtual
backplane is a method for interfacing a variable
number of components in such a way that it appears
they are all peers. The conceptual architecture, as
previously shown in Figure 3, illustrates this
scheme. Regardless of the physical architecture, all
I/O data is available to any application as if the I/O
interfaces were directly connected to the host
processor. In the example physical architecture
shown, the virtual backplane is a method for
combining the High Speed Data Bus and the Module
Backplane in such a way that all data is available
equally to applications running on any of the Single
Board Computers (SBC). This virtual backplane
realization allows modules to be located at optimal
sites throughout the system as needed without
impacting software applications.

This architecture also allows for chassis
organization to be optimally defined to reduce
weight and to allow local thermal issues to be
considered in the architectural implementation.
Additionally, new modules can be added for
extended availability, increased redundancy, and/or
increased processing and/or I/O capability. This
ability to add or remove modules with little impact
to the existing architecture provides an approach that
is easily scaled to meet program requirements. The
same basic architecture can control complex vehicle
avionics systems (such as the CEV), be downscaled
to address a CLV approach, reduce complexity of
environmental control device interfaces, or even
support small and simple exploration robots.

Software and Hardware Abstraction
As described above, every function (computing,

I/O, communications) appears as a peer function to
any other function. This is the first key to creating
an “Open Architecture” system. Since the software
is a peer to the I/O (implying that there is no
dependency between these two functions), an open

relationship is created between the hardware and
software, thus implying that different organizations
can complete the hardware and software. This first
“open feature” is associated with the modular nature
of the architecture, a layered approach to system
hardware and software provides the abstraction
necessary to minimize the effect of system changes
on user applications. This layered approach
provides a continuous spectrum of support ranging
from direct interfaces between hardware components
to application program interfaces accessed directly
by user applications (shown in Figure 4).

Figure 4 - Layered Design Scheme

Using a layered approach in the design of the
bus interface controller allows the interface to the
physical data bus/backplane to be separated from the
remainder of the layering scheme. Migration to
alternative bus architectures, even to dissimilar
communications schemes such as fiber optics and
wireless architectures, is simplified by isolating the
impact of the migration to a minimal number of
layers. This holds true throughout the spectrum. For
example, changes to the operating system affect only
those layers that directly interface with the Real-
Time Operating System (RTOS). In general, the
format of Application Program Interface (API) calls
remain unchanged, isolating user applications from
the affects of system modifications.

With the addition of advanced techniques in
Operating System implementation, this principal can
be further enhanced. Through use of an ARINC-653
compatible Operating System, the above described
isolation can be extended to a single software
application. This also means that each software

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 8

application can be a peer to other software
applications as well as I/O and communication.
Incorporation of the ARINC-653 OS into the
architecture creates two open features:

• Each software application is independent
and interfaces only through a “highly used
open standard API call.

• The Operating System itself is an open
standard and available from multiple
vendors. A change from the Honeywell
APEX OS to the Greenhill Integrity OS does
not have any impact on any application or
I/O within the system.

The realization of this flexibility is embodied
within the system middleware. While this may seem
a complex realization, this is work that has already
been completed and is approaching 100 million
hours of proven operation. This middleware has
successfully been ported from the National 29050
processor in the 777 Aircraft Information
Management System, to a custom enhanced 29050
version within the AIMS 2, to the IBM 750FX flight
computer in the Boeing 787. This reusable
middleware code is currently being ported to the
750FX on the Constellation Orion spacecraft and is
the baseline implementation for the Space Suit
computer. This continuous reuse demonstrates the
commonality and cost savings that the NASA has
been hoping to achieve.

Time and Space Partitioning
Through a combination of hardware, software,

and operational tools, a single high-throughput
computational platform may be partitioned into
multiple virtual computers (shown in Figure 5).
This partitioning occurs in four domains: memory
space, computation time, I/O access, and backplane
access. Each virtual computer appears as a dedicated
resource to the associated software application,
known as a partition. This scheme also supports
multi-processing using multiple processors within
the overall system. Increased future processing
requirements may be implemented within virtual
computers on existing processors, or on newly added
processors. The real-time operating system portion
of this scheme, known as ARINC-653, has gained

wide acceptance recently through its use by a variety
of COTS operating system vendors.

Figure 5 – Full Time and Space Partitioning

In the memory domain, each software partition
is allocated a pre-defined range of memory
resources. Based upon the needs of the software, the
size and location of a partition's memory resources
are allocated by the operational tools. A hardware
Memory Management Unit (MMU) enforces access
rights to the memory resources. Other partitions may
read from allocated memory, but only the owner
partition is granted write privileges. This scheme
ensures that software and/or memory failures do not
propagate to other partitions running on the same
physical CPU. Temporary storage locations such as
program registers are automatically stored by the
operating system and software infrastructure when a
context switch occurs.

In the computation time domain, a partition's
processor resource allocation is pre-determined by
operational tools, based upon the computational
requirements of the partition. Using the interrupt
scheme of the host SBC, the operating
system/middleware performs a context switch from
one partition to the next according to the pre-defined
schedule. Thus a partition is guaranteed sufficient
computing resources based upon the partition's
execution frame rate needs. The order of execution

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 9

between partitions is consistent within each
execution frame.

In the I/O access and backplane access
domains, data flow is pre-determined by operational
tools, based upon the needs of the various partitions.
Operational tools convert the needs of various
applications, along with a description of the physical
architecture of the avionics system, into a set of
bus/backplane access tables. These tables are used
by a backplane interface controller and an I/O
interface controller to control the movement of data
in and out of the processor and I/O cards.

Time and Space partitioning coordinates the
data flow through the system with the scheduling of
processor resources available to the applications.
This scheme creates a highly deterministic, high-
reliability system. From the standpoint of an
application, data is available in memory on the
processor card when it is required, and data
produced by the application is placed in local
memory where the processor retrieves it for
transmission to its source destination. The time-
based, table-driven nature of time and space
partitioning produces an environment that is
conducive to easy modification, upgrade, and
enhancement.

Generating a new set of tables and re-validation
of the system interactions can accommodate a
variety of modifications to the system. The operating
system, software infrastructure, and any unaffected
application source code remains unchanged.

One of the key benefits of an IMA system is
that the partitioning of a computer into multiple
virtual computers is seamless. Properly
implemented, no partition can:

• Contaminate another's code, I/O, or data
storage areas (space partitioning)

• Consume shared processor resources to the
exclusion of any other partition (time
partitioning)

• Consume I/O resources to the exclusion of
any other partition (I/O partitioning)

• Cause adverse affects to any other partition
as a result of a hardware or software failure
unique to that partition

This architecture also enhances the overall
processing platform reliability. A fault in a single
hardware element affects only the partition(s)
associated with that element. A hardware failure will
not necessarily disable an entire Line-Replaceable
Module (LRM). These factors allow a partition
running on a single processor to be modified without
requiring re-certification of other partitions running
on the same processor. Thus, partitions that are
subject to frequent modifications may be co-resident
with relatively stable partitions without requiring
superfluous re-verifications. Likewise, partitions
with mixed criticality levels may be co-resident
without requiring all partitions to be certified to the
highest criticality level. This scheme is sufficiently
mature and demonstrable that it has been certified by
the Federal Aviation Administration (FAA) for
commercial airlines, and by the military for a variety
of aircraft.

Fault Isolation Zones
Fault handling is critical in any architecture that

has the capability to adversely affect human life or
mission success. In addition to compensating for
simple failures, a critical computer system must
account for classic Byzantine fault conditions. Table
1 is generally accepted as accurately describing the
number of redundant channels required to
compensate for Byzantine fault conditions.

Table 1 – Byzantine Fault Conditions
Required

Fault
Tolerance

Self Test
Coverage

Cross
Channel

Trust

Number of
Redundant
Channels

0 Faults N/A N/A ≥1

1 Fault
100%

<100%
<100%

Truthful
Truthful

Lies*

≥2
≥3
≥4

2
Sequential
Faults**

100%
<100%
<100%

Truthful
Truthful

Lies*

≥3
≥4
≥5

2 Simul-
taneous

Faults***

100%
<100%
<100%

Truthful
Truthful

Lies*

≥3
≥5
≥7

* Classic Byzantine Fault: number of required channels is
established by a formal proof

** 1st failure removed before second failure occurs
*** 1st failure not removed before second failure occurs

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 10

Through use of high integrity processors,
coupled to a high integrity Virtual Backplane, a
master-shadow redundancy scheme, and robust
BIT/BITE capability, a system having 100% fault
coverage and truthful cross-channel communications
can be developed. As indicated in Table 1, this
combination results in the minimal number of
required channels to compensate for fault conditions.
There are many examples of high integrity
processors within the Space community. High
integrity processors can be created but are not
limited to using lock-step techniques, common-
monitor implementations, triple modular
redundancy, and polynomial progression encoding
techniques. These techniques are not new to the
Space industry; lock-step processers are used in the
Space Shuttle Main Engine Controller (SSMEC) and
the Atlas flight computer. Polynomial progression
encoding is used as the fail safe in the Shuttle
Multiplexer/Demultiplexer within the shuttle
avionics system.

Fault Detection and Isolation. Along with a
sufficiently robust BIT/BITE capability, a high
integrity step processor architecture can detect and
isolate faults without requiring a cross-channel
voting mechanism. Honeywell has successfully
demonstrated the viability of lock-step processing
using a variety of implementations. In all cases a
SBC is divided in two with duplicate processors,
memory, compare logic, and bus/backplane
interfaces. Each side contains the logic to enable
output from the other side. Both sides have to agree
prior to outputting data. If the clock speed is
relatively slow, all processor bus transactions,
memory accesses, and bus/backplane activity can be
compared on a cycle-by-cycle basis. With high-
speed systems, comparing data entering and leaving
the SBC is sufficient to determine faulty conditions
(see Figure 6). Regardless of the specific
implementation, Honeywell has used this
architectural concept repeatedly to meet the FAA’s
requirement of <10-9 chance of an undetected
failure.

Figure 6 – Simple Lock-step Architecture

Fault Recovery
 When the two sides of the SBC disagree, the

associated LRM discontinues outputting data and
attempts to correct the fault condition. If the fault
can be corrected, the LRM places itself back into
service upon fault correction. While the LRM is
attempting to resolve the fault condition, another
aspect of this integrated modular architecture assures
uninterrupted system operation. This aspect of the
architecture is known as master-shadowing. On a
partition by partition basis (not LRM by LRM), the
system architect may choose to provide one or more
shadow partitions for any given partition. These
shadow partitions reside on separate LRMs and
receive the same inputs as the master partition. They
perform the same calculations and generate the same
outputs. However, the shadow partitions monitor
the virtual backplane to determine if the master has
provided the output data, in which case the shadow
does not output duplicate data. However, if there is
no data on the virtual backplane at the pre-scheduled
interval, the shadow provides the output data. This
scheme is repeated for as many shadow partitions as
the system architect determines are necessary,
assuring uninterrupted system operation. An
alternate to master shadowing is to have each
redundant partition place data on the Virtual
Backplane at all times. Other elements then operate
on the first valid data. All data will either be valid
or non-existent as enforced by the high integrity
processor or the high integrity Virtual backplane.

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 11

As previously discussed, current highly
available COTS solutions are far less reliable than
the shuttle implementation. This is because they use
parallel bus implementations between their
functions. Within the shuttle system, each
processing element (e.g. General Purpose Computer)
is connected through a serial line (Multiplex
Interface Adapter Bus) to each I/O unit (MDM).
Furthermore, within the MDM, each I/O card is
connected to the internal controller through a
separate serial line. In each of these cases, a failure
in a single I/O card will not propagate and disable an
entire string within the redundant system. Couple
that with the fact that 64-bits of address and 32-bits
of data are two magnitudes more likely to fail the
system than a single serial line (or a serial pair) and
the reliability difference is clear. The advent of
these fault isolation zones also enable an effective
failure detection and isolation capability coupled
with ISHM techniques. This successful combination
has resulted in the number of false failures detected
to decrease from 50% in airplanes prior to the 777 to
only 8% in the 777 (comparison of equal AIMS
functions).

Progression to Network Node
Honeywell has observed a misconception

within the NASA community relating to the IMA
implementation. This misconception is that the IMA
system has a “Central Computer” like the Space
Shuttle and is not a distributed system. Nothing
could be further than the truth. This is natural
misconception to the casual observer due to the
highly visible examples within the commercial
community and the Orion implementation. The
AIMS 777 computer is located in a centralized
cabinet to facilitate maintenance of the aircraft. As
part of that design requirement, the inter-cabinet bus
was only designed to drive the short distance within
the cabinet. In the Orion Vehicle Management
Computer within the spacecraft, there are actually
two high integrity processors and a low integrity
communication processor located in a single chassis.
This however, is not required within the architecture.
The location of these three processors in a single
enclosure is to facilitate the packaging at the capsule
level. They could have as easily been located in six

separate chassis and have been located anywhere in
the vehicle. A progression of avionics concepts is
shown in Figure 7. Note the colors in the
progression; the central computer is all one color,
indicating a single complex function. The
distributed system has many boxes, each having a
single function. The integrated system has boxes
with many colored functions within each box. Each
of the colored slices can be a single box or integrated
into any numbers of chassis.

≈ ≈

Centralized Computing System – Original
digital avionics controls
were centralized with few fault
containment zones

Federated Computing System –
Federated systems provided fault
containment zones but increased interface
complexity

Integrated Modular Computing System – IMA
provides the best of
centralized and federated
systems

Vintage 1960s – 1970s

Vintage 1970s – 1980s

Cutting Edge 1990s –

Figure 7 - Aircraft avionics have progressed from
the centralized system to the DIMA
"network node" system.

 This technique is becoming prevalent within
the commercial airline industry as evidenced by the
findings of “Distributed IMA and DO-297:
Architectural, communication and certification
attributes”[2] (IEEE 10.1109/DASC.2008.4702769).
This paper describes characteristics and the
connection between the distributed architectural
approach, its core communication system and the
development and certification process. Based on the
attributes of the communication system and its open
interfaces, a Distributed integrated modular avionics
(DIMA) architectural approach provides safety-
critical and secure communication, distributed
integration, hierarchical separation, partitioning and
physical distribution in addition to IMA properties
like flexibility.

During the implementation of the Orion
avionics architecture several architectural migrations
were occurring driving the Honeywell base
architecture to a network node configuration. The
term “network node” is intended to describe any

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 12

function within the DIMA system that can be
attached to the Virtual Backplane. The Orion
avionics architecture is a DIMA implementation of a
network node system as shown in Figure 8. A
demonstration of the Open Systems Architecture
nature of the “network node” is the current activity

within the current architecture. The RIU, MBSU,
and ECLSS DE Units are all being redistributed and
implemented as multiple Power Data Unit (PDU)
assemblies and the work being redistributed
throughout the Lockheed Martin Orion team.

FCM

PS SC
P

FC
N
ET

FCM
PS SC
P

FC
N
ET

Figure 8 - Orion 606E Baseline as published in May 2008. This demonstrates the DIMA "network node"

implementation of the Orion avionics.

TTGbE Virtual Backplane

To implement the Virtual Backplane in the
Orion avionics system, Honeywell has
recommended and the Lockheed Martin team along
with the NASA has modified the high integrity
Virtual Backplane to Time Triggered Gigabit
Ethernet (TTGbE). TTEthernet, developed through
a joint agreement between TTTech and Honeywell is
an extension of classical Ethernet with additional
services to meet time-critical, deterministic or
safety-relevant conditions. It is compatible to
standard IEEE 802.3 Ethernet and integrates with
other Ethernet networks. As TTEthernet supports
communication among applications with various

real-time and safety requirements over a network,
three different message types are provided:

• Time-triggered messages are sent over the
network at predefined times and take precedence
over all other message types. The occurrence,
temporal delay and precision of time-triggered
messages are predefined and guaranteed. The
messages have as little delay on the network as
possible and their temporal precision is as
accurate as necessary.

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 13

• Rate-constrained messages are used for
applications with less stringent determinism and
real-time requirements. These messages
guarantee that bandwidth is predefined for each
application and delays and temporal deviations
have defined limits. Rate-constrained message
types are compatible with AFDX.

• Best-effort messages follow a method that is
well-known in classical Ethernet networks.
There is no guarantee whether and when these
messages can be transmitted, what delays occur
and if messages arrive at the recipient. Best-
effort messages use the remaining bandwidth of
the network and have less priority than the other
two types of messages.

Spacewire – a simplified point to point
Virtual Backplane

As part of the open system nature of the DIMA,
any part of the system can be changed out. For the
Space Suit program, only two high integrity
processors, two I/O cards, and a communication
node are required for the system. Because of this
simplicity and the need for very low power, it was
decided to use a simple point to point
communication in the Space Suit proposed
implementation as shown in Figure 9.

Figure 9 - Simplified Space Wire point to point

shows the open nature of the Virtual
Backplane in the DIMA architecture.

Communication Node
As noted in the Orion Design, the DIMA

architecture has been expanded to include a
communication node. This node utilizes a Standard
Network Interface Controller (SNIC) along with a
non-high integrity processing element to implement
the Common Communication Adaptor (CCA)
function within the Orion system. As seen in Figure
9, the CCA function is connected as a node through
the point to point spacewire Virtual Backplane.

Progression to Altair and Beyond
As a progression to Altair and LSS

implementation, Honeywell is making enhancements
to improve the performance and make the entire
DIMA system more open. First and foremost, the
Altair avionics must have a much smaller Size,
Weight, and Power (SWaP) footprint than is
currently being realized in the Orion
implementation. According to Lauri Hansen in an
informal briefing, the Altair will need to be on the
order of one tenth the SWaP of the Orion
implementation. The current efforts 2009-2010 are
designed to continue to improve performance and
openness in relationship to re-configurable systems,
exploration of the miniaturization of the Self-
Checking Pair processor to support robotic and
spacesuit applications, and to continue to explore the
advancement, openness, and miniaturization of the
Remote Interface Unit Controller.

Re-configurability is a system concept NASA is
requiring for their Exploration Systems of which
CEV is but one element. The reconfiguration goal is
to demonstrate the concept of a dynamically re-
configurable backplane, with autonomous
configuration demonstrated with the connection of
two networks.

Future space applications will require smaller
and more flexible RIU designs that are fail-silent or
fail-passive. An RIU design that can be readily
adapted to new applications at minimal additional
cost will provide advantages to NASA. This will
require a controller design that provides the
flexibility and throughput to handle a wide range of
I/O types. Also, noting that development and
qualification of software is a significant cost driver,

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 14

it is desirable to maintain a controller design that is
based on hardware only or which does not require
the development of custom software for each
application. RIU locations used in the LDAC-1
evaluation are shown in Figure 10.

Figure 10 - LDAC-1 RIU location used in avionics
evaluation

The Honeywell self-checking pair processor
which was developed for the 787 Flight Control
Module (FCM) is the basis of the Orion Vehicle
Control Module and provides a radiation tolerant
reliable processing element. The Constellation
program has need for this kind of processing element
to support robotics, lunar base facilities and
spacesuit systems. The advantage of having a
common processing element allows efficient use of
processor modules with units being swapped to
support other operations when they are no longer
needed in a current mode as well as providing spare
parts which are available in case of emergencies.
The current miniaturized concept is shown in Figure
11. Current efforts include both Multi-Chip Module
(MCM) and System on Chip (Soc) investigations.

MCM

SoC SoC

I
O
P

I
O
P

D SD S
(wrap)

D S D S
(wrap)

D S D S

D S D S Spacewire / PCIe

Figure 11 - System on a chip miniaturization
concept currently in work

In addition to efforts to miniaturize the main
processor, it is necessary to improve the openness
and create a reconfigurable/programmable standard
set of I/O intended to meet the needs of Altair and
beyond. The goal is to create an RIU that is at least
¼ the size of the same RIU implemented in current
technology as shown in Figure 12.

Figure 12 - The goal is to shrink the RIU from a
6u220 form factor to a 3u160 form
factor.

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 15

• Investigate a single chip solution for the
RIU Controller

• Include hooks associated with the ability to
dynamically reconfigure the Virtual
Backplane

• Pursue adoption of more “open” hardware
architecture including adoption of the high-
speed PCI-Express (PCIe) bus architecture

• Develop conceptual specs for 4 standard I/O
cards that can be used for a high percentage
of RIU I/O signals
 Analog Card
 Digital Card
 Solenoid Card (outside scope of this

effort)
 Programmable I/O Card

• Based on such standard I/O building blocks,
propose a conceptual design for a new
universal RIU

• Single chip solution for Orion NIC and RIU
Switch

• Investigate foundries capable of producing
devices that meet space environmental
requirements

Productivity and Cost
The advent of the DIMA system architecture

can provide several elements of cost reduction for
the NASA community, both Human Space related
and extended into the satellite community. The most
proven concept within the DIMA system is cost
savings resulting from reduction in retest costs.
Each partition in the system is stand alone and does
not need recertification as the platform is upgraded.
A specific example of this is that the application
software from the 777 to the double speed
redesigned hardware for the 777 Extended Range
airplane was 98% reused without modification. The
DIMA architecture also provides savings in software
and integration. The full comparison of a DIMA
system compared to a federated (distributed) system
is shown in Figure 13.

Real World Comparison of Development Costs

Figure 13 - Historic comparison for DIMA costs for

development and production showing
the cost savings associated with
advanced architectures.

There is also cost avoidance by using common
building blocks. Each element of the DIMA
“network node” implementation is interchangeable
(and replacable by 3rd party in the future). An
example of cost savings associated with reuse of
common building blocks is shown in Figure 14.

IMA Forces this level of commanality within the system

Reductions in NRE, Risk, Schedule, and Life Cycle Cost
vary from 5% to 30% or higher depending on

commonality

Processor Family

Processor and Board Support S/W

S/W Development Environment & Design Tools

Integration Infrastructure

System Bus

I/O Integration (cPCI)

Architecture

Industry Standards i.e. ARINC 653

Middleware

Non‐recurring

Estimated

Savings

Operational

Estimated

Savings
5%

10%

20%

30%

40%

5%

15%

20%

25%

30%

Design

Reuse

Technology
Dependent

Long life

Cycle

Standards

Technology

Independent

√

√

√

Optional

√

√Optional

Optional

Optional

√

Figure 14 – Commonality is one of the goals of an

open system. Each element can be
reused to reduce cost.

Progression of an Open Architecture: from Orion to Altair and LSS May 2009
S65-5000-20-0

This paper does not contain technical data and may be released to the public.
Page 16

References:
[1] Open Systems Architecture - Both Boon and Bane

Black, R.; Fletcher, M.
25th Digital Avionics Systems Conference, 2006 IEEE/AIAA
Volume , Issue , 15-19 Oct. 2006 Page(s):1 - 7
Digital Object Identifier 10.1109/DASC.2006.313746

[2] Distributed IMA and DO-297: Architectural, communication and certification attributes
Wolfig, R.; Jakovljevic, M.
Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th
Volume , Issue , 26-30 Oct. 2008 Page(s):1.E.4-1 - 1.E.4-10
Digital Object Identifier 10.1109/DASC.2008.4702769

E-mail Addresses

Ed Banas
Constellation Business Development
Human Space Business Segment
ed.c.banas@honeywell.com

Ralph Cacace
Constellation Business Development
Human Space Business Segment
ralph.a.cacace@honeywell.com

Mitch Fletcher
Chief Systems Engineer
Human Space Business Segment
mitch.fletcher@honeywell.com

