
-UNCLASSIFIED-

-UNCLASSIFIED-

OPERA Software Architecture

OSA

Steve Crago
Janice McMahon

USC/ISI-East
May 29, 2008

2-UNCLASSIFIED-

-UNCLASSIFIED-Outline

Introduction

OPERA Software Environment

Software Fault Tolerance for OPERA

3-UNCLASSIFIED-

-UNCLASSIFIED-Multicore Trends

x86 Multi-Core

Cell

GPU

TILE64

Power density and complexity problems have
driven current and next generation processors
to have multiple cores on chip

Intel Core Duo
AMD
8 core SUN Niagara-2
Tilera TILE64

On-chip parallelism improves throughput of
multiple applications, but results in
programming challenges

Single applications must be parallelized
Parallel applications must be scalable
Requires highly skilled programmers or better tools

4-UNCLASSIFIED-

-UNCLASSIFIED-

Interprocessor Communication

Low latency connections between compute tiles expose new
software issues (multi-core ≠ Symmetric Multiprocessor ≠
High Performance Computer)

Traditional Multiprocessor

DRAM
~100 cycles

DRAM
~100 cycles~1000 cycles

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

<10 cycles
latency between

tiles

Multi-Core Architecture

5-UNCLASSIFIED-

-UNCLASSIFIED-Performance Sources

Instruction Level Parallelism
Fine grained
Available in general-purpose legacy code
Exploited by traditional superscalar and VLIW uniprocessors
Typically limited by branch prediction and dependencies

Data Level Parallelism
Efficient to exploit
Available in streaming applications
Relatively easy for programmer to specify
Exploited by multimedia extensions, Cell, SIMD architectures

Thread Level Parallelism
Executes tasks in parallel
Needed for scalability
Trickier to program or extract from program
Initial focus of commercial multi-core architectures

Multi-core tools must consider these sources of
parallelism simultaneously. This differentiates multi-core
tools from traditional uniprocessor and multiprocessor

tools.

6-UNCLASSIFIED-

-UNCLASSIFIED-Government/Industry Multi-core
Roles

Industry
Hardware: stamp x86 cores on a chip (e.g. Intel, AMD)
Hardware: develop aggressive multi-core chip for specific
commercial markets (e.g. Tilera)
Evolutionary software tools and programming support
General-purpose software research and education (e.g. fund
universities to teach students how to program multi-core)

Government Responsibilities
Special needs (e.g. radiation hardening)
Application libraries (e.g. MPI, VSIPL)
Domain-specific tools
Run-time management for dynamic scenarios and autonomous
operation (resource management and fault tolerance)
Longer term research

7-UNCLASSIFIED-

-UNCLASSIFIED-Outline

Introduction

OPERA Software Environment

Software Fault Tolerance for OPERA

8-UNCLASSIFIED-

-UNCLASSIFIED-

OPERA Software Architecture Goals
Enable application demonstration of OPERA processor

Provide basic functionality to allow hardware technology
demonstration

Leverage commercial Tilera software base
Current support is for sequential compiler and library for message
passing and shared memory

Provide baseline programming environment for future
missions

Based on familiar programming models
Standard-compliant APIs

Provide technology base for future software
technologies

Domain-specific parallelization
Dynamic resource management
Software fault tolerance

9-UNCLASSIFIED-

-UNCLASSIFIED-

OPERA Software Architecture

Long-Term Multicore
System Software Vision

Multi-core System Software

Applications

Run-time System

Static
Compiler

Application/ System
Libraries

(Static and Dynamic)
Binaries
Intermediate representations

Programming
languages
Explicit/implicit
parallelism

Fault
Tolerance

Resource
Manager

System
Utilities

Dynamic
Compiler

Multicore Hardware Resources

Processing
cores I/O PortsMemory

Banks
Network

Links

Supports dynamic, fault-tolerant, and autonomous operation

Application
Libraries

Applications

Parallel Binary Executable

Tilera Modified Compiler

Linker
Communication

Libraries

10-UNCLASSIFIED-

-UNCLASSIFIED-

OSA Funded Tasks
Tool extensions

Floating point extensions: compiler, simulator, debugger, iLib
library
Legacy software support: C++, MPI, OpenMP, VSIPL,
pVSIPL++, OpenPNL

Performance and productivity tools
Parallel performance analysis
Parallel debug
Run-time monitor and run-time system
Fine-grain parallel compiler

Applications
JPEG2K
CAF
Co-add
On-board processing

11-UNCLASSIFIED-

-UNCLASSIFIED-

Outline

Introduction

OPERA Software Environment

Software Fault Tolerance for OPERA

12-UNCLASSIFIED-

-UNCLASSIFIED-

Software Fault Tolerance

Rad-hard by design (RHBD) as applied to OPERA will
provide protection for total dose, latchup, and single-
event upsets

Rate of updates can be traded off with cost of protection
RHBD can be used in combination with system-level software
techniques

Other sources of faults will still exist, e.g.
Software error
Physical damage

Software fault tolerance provides mitigation for faults
while minimizing overhead and can work in
conjunction with RHBD to provide overall mission
reliability

13-UNCLASSIFIED-

-UNCLASSIFIED-Run-time Research

Resource management and introspection
Core allocation
Power management
Introspection hooks

Performance monitoring
Behavior monitoring
Support for programming and performance tuning

Fault tolerance
Support from compiler and run-time system
Limited redundancy
Check-pointing and roll-back
Interaction with resource management

14-UNCLASSIFIED-

-UNCLASSIFIED-Fault Tolerance Opportunities

Redundancy available
Cores
Networks
Memory interfaces
I/O

Programmability
Fault tolerance and performance can be tuned
according to application needs

15-UNCLASSIFIED-

-UNCLASSIFIED-Fault Tolerance Challenges

Increased state
Cores
Networks
Memory interfaces
I/O

Programmability
Programming can be topology-dependent and tied to
physical location

16-UNCLASSIFIED-

-UNCLASSIFIED-Summary

OPERA is an opportunity to provide
unprecedented general-purpose performance
for space

OPERA software will build on commercial
software to provide an environment suitable for
government applications

OPERA provides both challenges and
opportunities for fault tolerance

Being addressed through both hardware and
software

	OPERA Software Architecture��OSA
	Outline
	Multicore Trends
	Interprocessor Communication
	Performance Sources
	Government/Industry Multi-core Roles
	Outline
	OPERA Software Architecture Goals
	Long-Term Multicore�System Software Vision
	OSA Funded Tasks
	Outline
	Software Fault Tolerance
	Run-time Research
	Fault Tolerance Opportunities
	Fault Tolerance Challenges
	Summary

