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Even consumers are seeing the HPC heat issue

76-inch 
HDTV:
200 watts

Video game 
with
IBM Cell BE 
processor:
380 watts, 
twice what the 
TV uses!
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Part 1: Near-term ideas

• Switch technology is only a fraction of the problem… 
look at memory, communication

• Slow down the clock!
• Use multiple cores per control thread to minimize 

programmer pain
• Design active components to 70 watts/liter, no more, no 

less
• Embrace new tradeoff between sparse and dense 

methods
• Use higher-order stencils, implicit methods to greatly 

increase useful flops per data point
• Move away from scout threads, speculative parallelism, 

unless legacy software is your ball-and-chain
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Some 2005-era data (from Bill Dally)

1300 to 1900 pJMove 32 bits off chip
100 pJMove 32 bits across 10 mm chip
50 pJRead 32 bits from 8K RAM
10 pJ32-bit register read
5 pJ32-bit ALU operation

Energy (130 nm, 1.2 V)Operation

• Moving data chip-to-chip is much more expensive than 
the gate activity on chip.

• Some of the burden will be on the programmer, not just 
the hardware engineer, to control this energy use.
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The power cost of the clock itself

“It’s 25% of the chip power”
—Sun Microsystems, 2003

“It’s more like 50 to 60% of the chip power.”
—Multigig, 2006

“Everything will be multi-cycle latency.”
—Thomas Sterling, two days ago

Reduce clock to the linear region or even more 
drastically. Do more per cycle. Pushing the clock is 
like revving your engine at a red light.

Take a cue from the human brain… 25 watts, ~1 Hz!
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Increase ratio of cores to threads… carefully

• Instruction control takes ~30 times the wattage of a 64-bit 
multiply-add unit, suggesting that we overprovision the 
multiply-add units

• Thinking Machines, MasPar, etc. proved that a ratio of 
thousands is too much for most things

• Current SSE ratio (2:1, 4:1) is OK for general computing, 
not aggressive enough for HPC

• A SIMD ratio of 32 to 256 seems about right for HPC 
without creating pain for programmers

• The C* idea (poly variable type) is about as easy as 
parallel programming gets, keeps resurfacing (for a good 
reason)
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Example: 210 MHz, 96 cores, 1 control thread

• Array of 96 Processor Elements; 
64-bit and 32-bit floating point

• 210 MHz… key to low power
• 47% logic, 53% memory

– About 50% of the logic is FPUs
– Hence around one quarter of the 

chip is floating point hardware
• About 1 TB/sec internal 

bandwidth
• Only 128 million transistors, but 

faster at 64-bit FLOPS than x86 
multicore two generations later

• Approximately 10 Watts

ClearSpeed CSX600
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Heat leads to bulk

• Air cooling hits limits at about 70 watts/liter
– PCI standard of 25 watts, size is 0.3 liters
– A 1U server might use 1000 watts, volume is 14 liters
– A 42U standard rack might use 40 kilowatts, 3000 liters

• Exceed 70 watts/liter, and temperatures rise 
above operational limits

4 inches by 6 inches
0.5 liter in system

35 watts
9 ounces

Current e620 ClearSpeed accelerator
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Dissipation volume can exceed actual volume

• To find the real 
volume occupied by 
a component in 
liters, divide its 
wattage by 70

• What may seem like 
a dense, powerful 
solution might 
actually dilute the 
GFLOPS per liter 
because of heat 
generation.
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New Design Approach Delivers 1 TFLOP in 1U
• 1U standard server
• Intel 5365 3.0 GHz

– 2-socket, quad core
– 0.096 DP TFLOPS peak
– Approx. 650 watts
– Approx. 3.5 TFLOPS 

peak in a 25 kW rack

• ClearSpeed Acceleration 
Server Concept

– 24 CSX600 hectacore processors
– ~1 DP TFLOPS peak
– Approx. 500 watts
– Approx. 19 TFLOPS 

peak in a 25 kW rack
– 18 standard servers & 

18 acceleration servers
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ClearSpeed Accelerated TeraScale Server (CATS)

• 64-bit or 32-bit 
native IEEE FLOPS

• Prototype is 
0.97 TFLOPS

• 1U high
• Under 1 kW max
• Paired with x86 host 

(separate 1U unit)
• Allows 19 TFLOPS 

peak (64-bit) in a 
single air-cooled 
standard rack

A sneak preview:



Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
12

GFLOPS per watt for some capability systems
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GFLOPS per ft2 for some capability systems
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How big are chips, including the cooling volume?

• Itanium and Tigerton: 130 watts, 1.9 liters
• Clovertown, 3 GHz: 120 watts, 1.8 liters

• 8 Gigabytes of DDR-3 DRAM: 80 watts, 1.1 liters
• ClearSpeed CSX600 chip: 10 watts, 0.14 liters

20 mm

20 mm

A typical CPU chip…
Actual space in system
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Example of bulk-limited computing

The CPUs can perform 
10 million operations in 
the time it takes a 
photon to traverse the 
Earth Simulator facility.

At 6 megawatts, it 
doesn’t just simulate 
global warming. It 
causes global 
warming.
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Three “shackles” from the 20th Century

1. Floating-point arithmetic is hard, 
especially 64-bit precision, so you 
must use the algorithm that does the 
fewest possible operations.

2. Memory is expensive, dominating 
system cost, so you must make sure 
your program and data fit in the fewest 
possible bytes.

3. Parallel programming is hard because 
you have to coordinate many events, 
so you must express your algorithm 
sequentially.

The shackles still influence the way we use systems, but 
we must consciously move away from this mind set.

LOAD A(I)
A

 

D

 

D B(I)
STORE C(I)
INCREMENT I
IF I < N GO TO
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Letting go of old algorithms: Linear solvers

• Dense methods applied to sparse matrices do 
more ops but take less time, if sparsity > x%
– Recent paper in IEEE Computer used FPGAs to reduce 

sparse solver (4000 by 4000, 2% nonzero) from 67.3 sec 
to 33.8 sec

– Using a dense method takes less than 3 sec, uses about 
128 MB (which costs about $10 lately)

– Hundreds of hours of effort to create new version of 1970s 
algorithm leads to 10x slowdown. Economizes all the 
wrong things!

• Even coding for symmetric matrices only saves 
2x on arithmetic, memory, but increases 
execution time and programmer effort.
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50 GFLOPS from 250 W is easier at low efficiency

Hardest:
100% of peak

Easiest:
0% of peak

Add a
4-core 
x86;
Need 
90% 
eff.

Sustained
efficiency

Add a
future 64- 
bit Cell;
Need 

50% eff. Add 
ClearSpeed 

boards; 
Need only 

6% eff.

Power efficiency translates into ease-of-use by reducing 
optimization pressure on programmers

Add a 
future 
64-bit 
GPU;
Need 
80% 
eff.
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Raw 
Logic, 

Memory, 
or 

Communi- 
caitons

Parasitic + 
Interconnect 

Loss

N Gates
f frequency

BIT = Nf 
BInary 

Throughput

Watts or 
Megawatts 
defined by 
application 
(5 MW/5W)

Ops useful to 
user 

(OPs/FLOPS)

Overhead for 
easy 

programming 
(cache)

Software: 
(algorithms, 
languages, 

…)

X megaops 
or X 

megaflops 
per core, n 
cores: nX 

peak 
throughput

Sustained 
performance

Unrealized 
“fraction of 

peak”

Is this 
enough?

I/O, etc.

Logic: 
CMOS, 

etc.

Architecture:
32/64 bit 
floating 

point, Multi- 
core, …

Remember Erik’s Introductory slide

Note: Not to scale, 
loss through the pipeline
is around 99.9%
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Part 2: Longer-term ideas

• You optimize what you measure, so measure 
and report power use to the library 
programmers at a fine grain

• Make memory hierarchy highly visible to library 
programmer (through tools or modifications to 
existing languages)

• Need much more care in the use of numerical 
precision (and tools to do that for us)

• Use asynchronous design wherever possible
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Make memory hierarchy highly visible?

Register    :
width     64 bits
instances 28
bandwidth 2.5e9 per sec       
latency   4e-10 sec

Tier1memory =
width     256 bits
instances 1530000
bandwidth 1.25e9 per sec
latency   3.2e-9 sec

Tier2memory ==  etc.
MassStorage === etc.
. . .
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Ways to reveal the data motion cost

Hard work you do once… but then it ports through 
decades by altering the values. You optimize what you 
can see, so we need to see the real costs now that 
operations like + – * / are cheap.

A[0]:B[2]+1.4
A[1]:B[3]
C=A[2 instances]

Show every move, with arithmetic only allowed from registers?

YYY[0 to 255] === X[0 to 255] :*= ZZ[0 to 255]

Or, flank the arithmetic with the notation for each tier?
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We may need to rethink 64-bit flops…
• Every operation has an optimum number of bits of 

accuracy
– Using too few gives unacceptable errors
– Using too many wastes memory, bandwidth, joules, dollars.

• It is unlikely that a code uses just the right amount of 
precision needed.

0

16

32

48

64

80
IEEE 754 double precision

Optimum precision

All floating-point operations in application
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How do HPC programmers pick FP precision?

• Assume 64-bit is plenty, and use it everywhere.

• Use what is imposed by hardware (word size).

• Try two precisions; if answers agree, use the less 
precise one, otherwise use the more precise one.

• Compare computed answer for special cases where an 
analytic answer is known.

• Compare computed answer with physical experiment 
(rare).

• Perform careful analysis (very rare).
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Can a tool estimate joules, W, $, min. precision?

a(i,j) -= a(i,k) * a(k,j)

Tier 0 read/write
28 pJ
$2x10–15

Tier 1 read
50 pJ
$8x10–14

64-bit op
42 bits needed
10 pJ
$1x10–15

Tier 2 read
1900 pJ
$5x10–13

64-bit op
39 bits needed
12 pJ
$1x10–15

Cost and electrical power and precision are almost as 
important as timing… why not develop analysis tools for 
them? You can only optimize what you can measure.
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Finer-grained use of asynchronous design

• Even better than slowing down the clock: get rid of it.
• Async operation allows each part of a system to run as 

fast as it can.
• We have always had async at some global level (think of 

disk drives, network), and trend is to go finer and finer
• Main drawbacks

– Difficult to design and debug
– Lack of good EDA tools

• Advantages
– Higher performance
– Lower active power consumption
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Summary

• The biggest barrier to exaflops and zettaflops 
is the heat/power problem. Transistors may be 
cheap, but the energy they dissipate is not.

• Heat/power is not all in switching hardware; 
most of it is wattage for communication and 
memory. And clock switching is increasingly 
wasteful.

• In the long term, application programmers can 
help just as much as hardware engineers, by 
being less sloppy with memory use and 
precision demands.
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