
Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
1

Strategies for Solving the
Heat/Power Problem

John L. Gustafson, Ph.D.
Chief Technology Officer, HPC
ClearSpeed Technology, Inc.

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
2

Even consumers are seeing the HPC heat issue

76-inch
HDTV:
200 watts

Video game
with
IBM Cell BE
processor:
380 watts,
twice what the
TV uses!

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
3

Part 1: Near-term ideas

• Switch technology is only a fraction of the problem…
look at memory, communication

• Slow down the clock!
• Use multiple cores per control thread to minimize

programmer pain
• Design active components to 70 watts/liter, no more, no

less
• Embrace new tradeoff between sparse and dense

methods
• Use higher-order stencils, implicit methods to greatly

increase useful flops per data point
• Move away from scout threads, speculative parallelism,

unless legacy software is your ball-and-chain

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
4

Some 2005-era data (from Bill Dally)

1300 to 1900 pJMove 32 bits off chip
100 pJMove 32 bits across 10 mm chip
50 pJRead 32 bits from 8K RAM
10 pJ32-bit register read
5 pJ32-bit ALU operation

Energy (130 nm, 1.2 V)Operation

• Moving data chip-to-chip is much more expensive than
the gate activity on chip.

• Some of the burden will be on the programmer, not just
the hardware engineer, to control this energy use.

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
5

The power cost of the clock itself

“It’s 25% of the chip power”
—Sun Microsystems, 2003

“It’s more like 50 to 60% of the chip power.”
—Multigig, 2006

“Everything will be multi-cycle latency.”
—Thomas Sterling, two days ago

Reduce clock to the linear region or even more
drastically. Do more per cycle. Pushing the clock is
like revving your engine at a red light.

Take a cue from the human brain… 25 watts, ~1 Hz!

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
6

Increase ratio of cores to threads… carefully

• Instruction control takes ~30 times the wattage of a 64-bit
multiply-add unit, suggesting that we overprovision the
multiply-add units

• Thinking Machines, MasPar, etc. proved that a ratio of
thousands is too much for most things

• Current SSE ratio (2:1, 4:1) is OK for general computing,
not aggressive enough for HPC

• A SIMD ratio of 32 to 256 seems about right for HPC
without creating pain for programmers

• The C* idea (poly variable type) is about as easy as
parallel programming gets, keeps resurfacing (for a good
reason)

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
7

Example: 210 MHz, 96 cores, 1 control thread

• Array of 96 Processor Elements;
64-bit and 32-bit floating point

• 210 MHz… key to low power
• 47% logic, 53% memory

– About 50% of the logic is FPUs
– Hence around one quarter of the

chip is floating point hardware
• About 1 TB/sec internal

bandwidth
• Only 128 million transistors, but

faster at 64-bit FLOPS than x86
multicore two generations later

• Approximately 10 Watts

ClearSpeed CSX600

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
8

Heat leads to bulk

• Air cooling hits limits at about 70 watts/liter
– PCI standard of 25 watts, size is 0.3 liters
– A 1U server might use 1000 watts, volume is 14 liters
– A 42U standard rack might use 40 kilowatts, 3000 liters

• Exceed 70 watts/liter, and temperatures rise
above operational limits

4 inches by 6 inches
0.5 liter in system

35 watts
9 ounces

Current e620 ClearSpeed accelerator

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
9

Dissipation volume can exceed actual volume

• To find the real
volume occupied by
a component in
liters, divide its
wattage by 70

• What may seem like
a dense, powerful
solution might
actually dilute the
GFLOPS per liter
because of heat
generation.

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
10

New Design Approach Delivers 1 TFLOP in 1U
• 1U standard server
• Intel 5365 3.0 GHz

– 2-socket, quad core
– 0.096 DP TFLOPS peak
– Approx. 650 watts
– Approx. 3.5 TFLOPS

peak in a 25 kW rack

• ClearSpeed Acceleration
Server Concept

– 24 CSX600 hectacore processors
– ~1 DP TFLOPS peak
– Approx. 500 watts
– Approx. 19 TFLOPS

peak in a 25 kW rack
– 18 standard servers &

18 acceleration servers

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
11

ClearSpeed Accelerated TeraScale Server (CATS)

• 64-bit or 32-bit
native IEEE FLOPS

• Prototype is
0.97 TFLOPS

• 1U high
• Under 1 kW max
• Paired with x86 host

(separate 1U unit)
• Allows 19 TFLOPS

peak (64-bit) in a
single air-cooled
standard rack

A sneak preview:

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
12

GFLOPS per watt for some capability systems

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
13

GFLOPS per ft2 for some capability systems

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
14

How big are chips, including the cooling volume?

• Itanium and Tigerton: 130 watts, 1.9 liters
• Clovertown, 3 GHz: 120 watts, 1.8 liters

• 8 Gigabytes of DDR-3 DRAM: 80 watts, 1.1 liters
• ClearSpeed CSX600 chip: 10 watts, 0.14 liters

20 mm

20 mm

A typical CPU chip…
Actual space in system

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
15

Example of bulk-limited computing

The CPUs can perform
10 million operations in
the time it takes a
photon to traverse the
Earth Simulator facility.

At 6 megawatts, it
doesn’t just simulate
global warming. It
causes global
warming.

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
16

Three “shackles” from the 20th Century

1. Floating-point arithmetic is hard,
especially 64-bit precision, so you
must use the algorithm that does the
fewest possible operations.

2. Memory is expensive, dominating
system cost, so you must make sure
your program and data fit in the fewest
possible bytes.

3. Parallel programming is hard because
you have to coordinate many events,
so you must express your algorithm
sequentially.

The shackles still influence the way we use systems, but
we must consciously move away from this mind set.

LOAD A(I)
A

D

D B(I)
STORE C(I)
INCREMENT I
IF I < N GO TO

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
17

Letting go of old algorithms: Linear solvers

• Dense methods applied to sparse matrices do
more ops but take less time, if sparsity > x%
– Recent paper in IEEE Computer used FPGAs to reduce

sparse solver (4000 by 4000, 2% nonzero) from 67.3 sec
to 33.8 sec

– Using a dense method takes less than 3 sec, uses about
128 MB (which costs about $10 lately)

– Hundreds of hours of effort to create new version of 1970s
algorithm leads to 10x slowdown. Economizes all the
wrong things!

• Even coding for symmetric matrices only saves
2x on arithmetic, memory, but increases
execution time and programmer effort.

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
18

50 GFLOPS from 250 W is easier at low efficiency

Hardest:
100% of peak

Easiest:
0% of peak

Add a
4-core
x86;
Need
90%
eff.

Sustained
efficiency

Add a
future 64-
bit Cell;
Need

50% eff. Add
ClearSpeed

boards;
Need only

6% eff.

Power efficiency translates into ease-of-use by reducing
optimization pressure on programmers

Add a
future
64-bit
GPU;
Need
80%
eff.

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
19

Raw
Logic,

Memory,
or

Communi-
caitons

Parasitic +
Interconnect

Loss

N Gates
f frequency

BIT = Nf
BInary

Throughput

Watts or
Megawatts
defined by
application
(5 MW/5W)

Ops useful to
user

(OPs/FLOPS)

Overhead for
easy

programming
(cache)

Software:
(algorithms,
languages,

…)

X megaops
or X

megaflops
per core, n
cores: nX

peak
throughput

Sustained
performance

Unrealized
“fraction of

peak”

Is this
enough?

I/O, etc.

Logic:
CMOS,

etc.

Architecture:
32/64 bit
floating

point, Multi-
core, …

Remember Erik’s Introductory slide

Note: Not to scale,
loss through the pipeline
is around 99.9%

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
20

Part 2: Longer-term ideas

• You optimize what you measure, so measure
and report power use to the library
programmers at a fine grain

• Make memory hierarchy highly visible to library
programmer (through tools or modifications to
existing languages)

• Need much more care in the use of numerical
precision (and tools to do that for us)

• Use asynchronous design wherever possible

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
21

Make memory hierarchy highly visible?

Register :
width 64 bits
instances 28
bandwidth 2.5e9 per sec
latency 4e-10 sec

Tier1memory =
width 256 bits
instances 1530000
bandwidth 1.25e9 per sec
latency 3.2e-9 sec

Tier2memory == etc.
MassStorage === etc.
. . .

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
22

Ways to reveal the data motion cost

Hard work you do once… but then it ports through
decades by altering the values. You optimize what you
can see, so we need to see the real costs now that
operations like + – * / are cheap.

A[0]:B[2]+1.4
A[1]:B[3]
C=A[2 instances]

Show every move, with arithmetic only allowed from registers?

YYY[0 to 255] === X[0 to 255] :*= ZZ[0 to 255]

Or, flank the arithmetic with the notation for each tier?

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
23

We may need to rethink 64-bit flops…
• Every operation has an optimum number of bits of

accuracy
– Using too few gives unacceptable errors
– Using too many wastes memory, bandwidth, joules, dollars.

• It is unlikely that a code uses just the right amount of
precision needed.

0

16

32

48

64

80
IEEE 754 double precision

Optimum precision

All floating-point operations in application

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
24

How do HPC programmers pick FP precision?

• Assume 64-bit is plenty, and use it everywhere.

• Use what is imposed by hardware (word size).

• Try two precisions; if answers agree, use the less
precise one, otherwise use the more precise one.

• Compare computed answer for special cases where an
analytic answer is known.

• Compare computed answer with physical experiment
(rare).

• Perform careful analysis (very rare).

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
25

Can a tool estimate joules, W, $, min. precision?

a(i,j) -= a(i,k) * a(k,j)

Tier 0 read/write
28 pJ
$2x10–15

Tier 1 read
50 pJ
$8x10–14

64-bit op
42 bits needed
10 pJ
$1x10–15

Tier 2 read
1900 pJ
$5x10–13

64-bit op
39 bits needed
12 pJ
$1x10–15

Cost and electrical power and precision are almost as
important as timing… why not develop analysis tools for
them? You can only optimize what you can measure.

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
26

Finer-grained use of asynchronous design

• Even better than slowing down the clock: get rid of it.
• Async operation allows each part of a system to run as

fast as it can.
• We have always had async at some global level (think of

disk drives, network), and trend is to go finer and finer
• Main drawbacks

– Difficult to design and debug
– Lack of good EDA tools

• Advantages
– Higher performance
– Lower active power consumption

Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. www.clearspeed.com
27

Summary

• The biggest barrier to exaflops and zettaflops
is the heat/power problem. Transistors may be
cheap, but the energy they dissipate is not.

• Heat/power is not all in switching hardware;
most of it is wattage for communication and
memory. And clock switching is increasingly
wasteful.

• In the long term, application programmers can
help just as much as hardware engineers, by
being less sloppy with memory use and
precision demands.

	Strategies for Solving the Heat/Power Problem
	Even consumers are seeing the HPC heat issue
	Part 1: Near-term ideas
	Some 2005-era data (from Bill Dally)
	The power cost of the clock itself
	Increase ratio of cores to threads… carefully
	Example: 210 MHz, 96 cores, 1 control thread
	Heat leads to bulk
	Dissipation volume can exceed actual volume
	New Design Approach Delivers 1 TFLOP in 1U
	ClearSpeed Accelerated TeraScale Server (CATS)
	GFLOPS per watt for some capability systems
	GFLOPS per ft2 for some capability systems
	How big are chips, including the cooling volume?
	Example of bulk-limited computing
	Three “shackles” from the 20th Century
	Letting go of old algorithms: Linear solvers
	50 GFLOPS from 250 W is easier at low efficiency
	Remember Erik’s Introductory slide
	Part 2: Longer-term ideas
	Make memory hierarchy highly visible?
	Ways to reveal the data motion cost
	We may need to rethink 64-bit flops…
	How do HPC programmers pick FP precision?
	Can a tool estimate joules, W, $, min. precision?
	Finer-grained use of asynchronous design
	Summary

