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Revolution in Biology and MedicineRevolution in Biology and MedicineRevolution in Biology and Medicine
“The Human Genome Project has 
Catalyzed two paradigm changes 
in contemporary biology and 
medicine—
systems biology and predictive, 
preventive and personalized 
medicine. “

 

–

 

Lee Hood
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Systems BiologySystems BiologySystems Biology

Systems biology challenge: Utilize high-throughput technologies 
to drive large scale biological  and medical discovery

Bioinformatics
(Computation,   
Engineering, 
Systems Science,
Modeling, Simulation)
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The Exponential Rise in Computation 
Power and Biological Data:

 The Fuel of the Biomedical Revolution
 

The Exponential Rise in Computation The Exponential Rise in Computation 
Power and Biological Data:Power and Biological Data:

 The Fuel of the Biomedical RevolutionThe Fuel of the Biomedical Revolution
The harnessing of the 
(exponentially increasing) 
biological data through the 
use of (exponentially 
increasing) computational 
capabilities will 
revolutionize biology and 
medicine
For given problems, one or 
the other may be limiting, 
and this can change in the 
future depending on how 
the problem constraints 
grow in each dimension, and 
the rate of growth of each
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Computational Challenges in  
Systems Biology

 

Computational Challenges in  Computational Challenges in  
Systems BiologySystems Biology

How to fully decipher the (digital) information content of the genome
How to do all-vs-all comparisons of 1000s of genomes (or more)
How to extract protein and gene regulatory networks from 1 & 2
How to integrate multiple high-throughout data types dependably
How to visualize & explore large-scale, multi-dimensional data
How to convert static network maps into dynamic mathematical models
How to predict protein function ab initio
How to identify signatures for cellular states (e.g. healthy vs.

 

diseased)
How to build hierarchical models across multiple scales of time & space
How to reduce complex multi-dimensional models to underlying principles
Text searching to bring the literature and experimental data together

Hood, L. et al, Science, 2004
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Scales in Biology with Computational 
Opportunities

 

Scales in Biology with Computational Scales in Biology with Computational 
OpportunitiesOpportunities

Protein folding
Detailed molecular simulations
Cell-scale simulation
Cell-cell interactions
Microbial communities
Ecosystem
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Integrating 
Heterogeneous 
Biological Data 
through Cell- 
Scale 
Computational 
Models

Whole cell 
simulation 
represents an 
exascale 
computing 
challenge



Biochemical Reaction Networks Statistical Influence Networks

Constraint‐Based Model

Interaction Networks

Statistical Influence Network

Application of Constraints Network Inference

•Transcriptomics 

•Proteomics 

•Metabolomics 

Reaction Stoichiometry

Enz A Enz-A B Enz-A-B C D
Rxn. 1 -1 -1 +1 0 0 0 0
Rxn. 2 0 0 -1 -1 +1 0 0
Rxn. 3 +1 0 0 0 -1 +1 +1

Protein-Metabolite
Protein-Protein
DNA-Protein
DNA-DNA

Activation
Inhibition
Indirect

C = f(A,B,D)

Literature
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Integrated
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Phylogenetic
Data

Physiological
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More detail (biochemistry, etc.) Less detail

Eddy, JA, and Price, ND, Encyclopedia of complexity and systems science (In press)
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Two types of biological network modelsTwo types of biological network modelsTwo types of biological network models

1) Directly mechanistic
2) Require significant knowledge of the 
system
3) Broadly applicable where biochemistry 
is known
4) Laws of physics and chemistry can be 
directly applied
5) Relate more closely to phenotype (i.e. 
fluxes)
6) Once reconstructed from biochemical 
data, network not likely to change (other 
than additional reactions)

1) Not generally mechanistic
2) Can be applied without needing prior 
knowledge (although can be 
incorporated)
3) Broadly applicable without knowledge 
of biochemistry
4) Physico-chemical laws typically not 
applicable/applied
5) Relate more directly to high-

 
throughput data (i.e. transcriptomes)
6) Additional data can lead to significant 
network rewiring

Biochemical Reaction Networks Statistical Influence Networks

g1

AND

g2

g3

Price, N.D., and Shmulevich, I., 
Current Opinion in Biotechnology, 2007
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From Component to Systemic     
Annotation of Genomes

 

From Component to Systemic     From Component to Systemic     
Annotation of GenomesAnnotation of Genomes
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Mathematical Representation of a 
Biochemical Network

With the network represented in matrix form, the tools of linear
 algebra, linear programming, and convex analysis are available.

DEPARTMENT OF CHEMICAL AND 
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gen- transcript- metabol-prote- …etc.1. Components
Plurality of omics

2. Reconstruction
“Systemic annotation”
one set of reactions
arising from the genome

reconstruction of biochemical reaction network

The Systems Biology Process
 The role of reconstruction

 

The Systems Biology ProcessThe Systems Biology Process
 The role of reconstructionThe role of reconstruction

topology dynamicsconstraints sensitivity noise
…etc.3. in silico modeling

plurality of methods

phenotypic space
“practically infinite”
for most organisms

Simulation Experiment4. Hypothesis generation
and testing
-CHiP-Chip
-Fluxomics
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Computational challenges for 
biochemical network reconstruction

 

Computational challenges for Computational challenges for 
biochemical network reconstructionbiochemical network reconstruction

Automated reconstructions of cellular networks in detail from 
genomes (e.g. Rick Steven’s SEED)
Can it be extended to forming computable networks?
Can experimental data (e.g. knockout lethality data) be used as 
input as well
Are their limits to the algorithmic nature of the problem?
Is  automated text mining a necessary component?  (probably)
Given inputs of genome, biochemical characterizations, knockout 
lethality, probabilistic inference, can a predictive computable 
network be generated?  (Seems the answer should be YES) 
Also, can probabilistic metabolic networks be generated and 
shown to be useful (similar in ideas to Shmulevich’s Probabilistic 
Boolean Networks)
Reconstruction of dynamic models (would require sequence to 
kinetics computational capabilities
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Computational challenges for 
statistical inference networks

 

Computational challenges for Computational challenges for 
statistical inference networksstatistical inference networks
Network inference at the genome-scale

Currently, this is done by bi-clustering 
before network inference can be done
Largest models currently work with 
hundreds of variables, but what is 
needed is thousands to tens of thousands
Is an interplay between computational 
and data limitations

Enabling computation of genome-scale 
networks with feedback

For example, current models predict gene 
expression s given TF expression

Integrating heterogeneous data types
E.g. linking proteome and transcriptome 

Bonneau et al, Genome Biology (2006)
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Beyond Genome-Scale Networks to 
Whole Cell Simulators

 

Beyond GenomeBeyond Genome--Scale Networks to Scale Networks to 
Whole Cell SimulatorsWhole Cell Simulators

Adding spatial component to models will require greatly 
increased computational power (and data generation)
Simulation of physical properties of molecular machines

DEPARTMENT OF CHEMICAL AND 
BIOMOLECULAR ENGINEERING
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COMPUTATIONAL CHALLENGES COMPUTATIONAL CHALLENGES 
FOR PERSONALIZED MEDICINEFOR PERSONALIZED MEDICINE
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Systems View of DiseaseSystems View of DiseaseSystems View of Disease
Diseases are the result of one 
or more perturbed biomolecular 
networks
These perturbations lead to 
differences in the abundance of 
biomolecules (e.g. mRNA, 
proteins, metabolites)
These changes can then be 
measured and used for 
molecular diagnostics of disease
Thus, reporters of the state of 
these networks are available, if 
we can learn to read the signals

DEPARTMENT OF CHEMICAL AND 
BIOMOLECULAR ENGINEERING

dynamics of
pathophysiology

diagnosis

therapy

prevention
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Foundational Data for Personalized 
and Predictive Medicine

 

Foundational Data for Personalized Foundational Data for Personalized 
and Predictive Medicineand Predictive Medicine

Individual Genome Sequences
Two people sequenced so far

James Watson: Co-discoverer of structure of DNA
J. Craig Venter –

 

One of pioneers leading human genome sequencing
Will provide personalized information for each patient
Will provide probabilistic health futures

Blood Diagnostics
1000s of individual measurements
Patterns will be used to read out a current heath state
Taken repeatedly over the lifetime of a patient

Thus, patient can act as their own ‘control’

 

when changes from previous 
norms emerge

Represents the interplay between the digital information of the genome and the 
interactions with the environment throughout the lifetime of the

 

patient
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ExampleExample
 

Types of Biological Types of Biological 
InformationInformation
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Computational Challenges of 
Systems Medicine

 

Computational Challenges of Computational Challenges of 
Systems MedicineSystems Medicine

The $1000 genome will mean that eventually we can have 
genome sequences for at least hundreds of thousands of 
individuals
Diseases, such as cancer, are multi-genic and influenced by a 
variety of environmental factors
Thus, we will need to mine this data to identify diagnostic 
patterns that will guide therapy choice
Computational challenges associated with the high-

 combinatorics of personalized medicine are enormous

DEPARTMENT OF CHEMICAL AND 
BIOMOLECULAR ENGINEERING



University of Illinois at Urbana-Champaign
INSTITUTE FOR GENOMIC BIOLOGY

Computational Challenges for 
Personalized Medicine Diagnostics

 

Computational Challenges for Computational Challenges for 
Personalized Medicine DiagnosticsPersonalized Medicine Diagnostics
Thus, we can imagine that to identify powerful diagnostics, we will need to:

Link genome sequence data to patient records and blood diagnostic 
measurements (current and over time)
Search for patterns requiring mutations in multiple points in the 
genome, requiring a number of environmental factors (hopefully linked 
through previous studies to the blood) etc.

There are 6 Billion bases in the human genome, each of which could, in 
theory, be involved in disease (the actual number may be much lower, 
though)
Most diseases are multi-geneic –

 

current thought is that cancers results 
from ~6 mutations that are different in each case –

 

even within what are 
considered the same cancer –

 

and that symptoms can be non-existant from 
subsets of these mutations 
The combinatorics of these problems leads quickly into very large search 
space where full enumeration will not be possible –

 

and thus advanced 
computation with efficient approximate search strategies will be

 

needed

DEPARTMENT OF CHEMICAL AND 
BIOMOLECULAR ENGINEERING



University of Illinois at Urbana-Champaign
INSTITUTE FOR GENOMIC BIOLOGY

Tracking perturbed networks 
through molecular signals in blood

 

Tracking perturbed networks Tracking perturbed networks 
through molecular signals in bloodthrough molecular signals in blood

By learning to track network perturbations through blood 
measurements, the blood will become a novel means for studying 
human biology and medicine, including:

Normal physiology
Virtually all diseases
Development

However, we are not currently at the point we can do this in 
higher organisms.  
To develop this vision in full will require

Models of each cell type in body
Models of secretion patterns in vivo
Computational separation of signal from multiple sources in 
the blood
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Moving Beyond Diagnostics to 
Therapy Discovery

 

Moving Beyond Diagnostics to Moving Beyond Diagnostics to 
Therapy DiscoveryTherapy Discovery

To truly understand and be able to control multi-geneic 
diseases, we must be able to model the effects of these 
mutations on systems
This requires personalized computational models for 
personalized medicine
Eventually, we would like to have human disease simulators 
that, given a genome and then supplemented over time with 
additional information (e.g. blood diagnostics) from interaction

 with the environment, could predict therapies and provide the 
possibililty to actually fix disease states.
There is a huge information barrier (in addition to 
experimental) that will require huge amounts of computation to 
realize
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ConclusionsConclusionsConclusions
Systems Biology presents a myriad of 
computational challenges that must be met, 
including simulation at the level of molecules, 
pathways, cells, communities, and ecosystems.

Today, I focused primarily on challenges for simulating 
genome-scale networks in cells

The future of systems medicine clearly will require 
large investments in increasing computational 
power in order to harness the amount of 
information that will be available for each patient –

 VASTLY greater than it is today.
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Contact InformationContact InformationContact Information

Lab Website
www.igb.uiuc.edu/labs/price/home.html

University of Illinois

Price Lab

James Eddy
Swati Gupta
Caroline Milne
Ravali Raju
Jay Sung
Joe Dolivo
Luke Edelman
Seth Hanson
Azeem Husain

Email
ndprice@uiuc.edu

Further Reading

Price, N.D., et al, “Systems Biology and the 
Emergence of Systems Medicine,”

 

Genomic 
and Personalized Medicine: From Principles to 
Practice (Ginsburg, G. and Willard, H, editors), 
In Press –

 

feel free to email me if you’d like an 
advance copy.
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Challenges for genome-scale 
biochemical network simulations

 

Challenges for genomeChallenges for genome--scale scale 
biochemical network simulationsbiochemical network simulations
Constraint-based approaches only ones 
currently used at the genome-scale

Optimization methods (e.g. flux balance analysis) 
computationally inexpensive
Optimization-based re-engineering of networks is 
feasible for small numbers of permutations, but 
not large -

 
so are areas of large-scale optimization 

of re-engineering problems that could benefit from 
‘exascale’

 
resources

Genome-scale dynamic models not yet feasible
Genome-scale stochastic, single-cell models 
even further away
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Moving into the BloodMoving into the BloodMoving into the Blood
Differentiating multiple 
diseases

Organ specific 
molecular signatures
Combining multiple 
signatures 
Broader studies for 
differentiation

1 0 1 1 0 1 1 0 0 1
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Time

A>F     . . .     G>L      . . .     C>H

• Stratification  vs. 
Progression
– Different diseases
– Different stages 

Readout: Cancer 1, 2, 3 …
Stage   1, 2, 3, …
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Disease Arises from Disease 
Perturbed Networks

Non-Diseased Diseased

dynamics of
pathophysiology

diagnosis

therapy

prevention
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Technology
ComputationBiology/Medicine

Drives

Biology dictates what new technology should be developed; technology 
opens new frontiers in biology for exploration.

Revolutionizes
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Computational Challenges:         
moving to the exascale

 

Computational Challenges:         Computational Challenges:         
moving to the exascalemoving to the exascale

Systems Biology
Personalized Medicine

Individualized genome sequences for 
most people in U.S. and other 
developed nations (moving into rest 
of world eventually as well)
So, billions of sequences

How to read the signals

Blood diagnostic
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Dynamics of a Prion Perturbed 
Network

 

Dynamics of a Prion Perturbed Dynamics of a Prion Perturbed 
NetworkNetwork
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Innovations for the Next 20 Years in 
Biology and Medicine: 
Innovations for the Next 20 Years in Innovations for the Next 20 Years in 
Biology and Medicine: Biology and Medicine: 

Systems approaches to biology and medicine will dominate biological sciences in the 
21st century--global science networks and strategic partnerships.

Systems approaches will pioneer new opportunities in agriculture, bio-energy, 
biology, bio-remediation, health, nutrition, an understanding of human development, 
neurobiology and better educational  strategies.

Systems approaches  will move medicine from its current reactive

 

mode to 
predictive, preventive, personalized and participatory (P4 medicine) modes--with a 
focus on wellness.

The digitalization of biology and medicine will constitute a far

 

greater revolution 
than the digitalization of information technologies.

P4 medicine and the digitalization of medicine will enable health care to become 
cheap and easily executed. Therefore exportable throughout the globe including to 
the developing world.

Strategic partnerships and international networks in science will allow us to attack 
big scientific problems.

Enormous economic opportunities in biology
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OutlineOutlineOutline
Molecular signature classifiers
Relative expression reversals
Diagnosis similar cancers requiring very 
different treatments

Gastrointestinal stromal tumor 
Leiomyosarcoma

Survival prognosis marker

DEPARTMENT OF CHEMICAL AND 
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Molecular signature classifiersMolecular signature classifiersMolecular signature classifiers
The goals of molecular classification of tumors:

Identify subpopulations of cancer
Inform choice of therapy

Generally, a set of microarray experiments is used 
with

~100 patient samples
~ 104 transcripts (genes)

This very small number of samples relative to the 
number of transcripts is a key issue

Feature selection & model selection
Also, the platform of microarray used can have a 
significant effect on results

DEPARTMENT OF CHEMICAL AND 
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Estimating Error on Future CasesEstimating Error on Future CasesEstimating Error on Future Cases
Methodology
Best case: have 
an independent 
test set
Resampling 
techniques

Use cross 
validation to 
estimate accuracy 
on future cases
Feature selection 
and model 
selection must be 
within loop to 
avoid overly 
optimistic 
estimates 

Training 
Set

Test 
Set

Data Set

Resampling: Shuffled repeatedly 
into  training and test sets.

N
O

 in
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ss
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e

Average 
performance 
on test set 
provides 
estimate for 
behavior on 
future cases

Can be MUCH 
different than 
behavior on 
training set
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Relative Expression Reversal 
Classifiers: The Top Scoring Pair Approach

 

Relative Expression Reversal Relative Expression Reversal 
Classifiers: Classifiers: The Top Scoring Pair ApproachThe Top Scoring Pair Approach

Find a classification rule as follows:
IF

 
gene A >

 
gene B

 
THEN

 
class1, ELSE

 
class2

The classifier is chosen finding the most 
accurate and robust rule of this type from   
all possible pairs in the dataset
If needed a set of classifiers of the above 
form can be used, with final classification 
resulting from a majority vote (k-TSP)

Geman, D., et al. Stat. Appl. Geneti. Mol. Biol., 3, Article 19,

 

2004
Tan et al., Bioinformatics, 21:3896-904, 2005
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Rationale for k-TSPRationale for kRationale for k--TSPTSP
Based on concept of relative expression 
reversals
Advantages

Does not require data normalization
Does not require population-wide cutoffs or 
weighting functions
Has reported accuracies in literature comparable 
to SVMs, PAM, other state-of-the art 
classification methods 
Results in classifiers that are easy to implement
Designed to avoid overfitting

n= number of genes, m = number of samples
For the example I will show, this equation yields: 
1 0^9 << 10^20 

mn
2

2
<<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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Diagnosing Types of Sarcoma
 GIST and LMS

 

Diagnosing Types of SarcomaDiagnosing Types of Sarcoma
 GIST and LMSGIST and LMS

Gastrointestinal Stromal Tumor (GIST) and 
Leiomyosarcoma (LMS)

Morphologically very similar and thus hard to correctly 
distinguish using current methods
Have different treatments, so correct diagnoses is critical

Can be a life or death decision
Key differences

Gleevec efficacy
GIST:  50-80% effectiveness in completely eradicating the cancer
LMS: negligible effects

Expression of c-kit protein
Almost never expressed in LMS
Mixed for GIST –

 

but majority have c-kit expression 
Heterogeneous within the tumor
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Accuracy on data = 99%  Predicted accuracy on future data (LOOCV) = 98%

Price, N.D. et al, PNAS (2007)
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RT-PCR Classification ResultsRTRT--PCR Classification ResultsPCR Classification Results

100% Accuracy
19 Independent Samples
20 samples from microarray study 

including previously indeterminate case
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Price, N.D. et al, PNAS (2007)
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Comparative accuracies of cComparative accuracies of c--kit kit 
expression and the 2expression and the 2--gene classifiergene classifier

Price, N.D. et al, PNAS (2007)
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Kit Protein Staining of GIST-LMSKit Protein Staining of GISTKit Protein Staining of GIST--LMSLMS

Top Row –
 

GIST 
Positive Staining

Bottom Row –
 GIST negative 

staining

Blue arrows -

 

GIST   Red  arrows  -

 

LMS 

Accuracy as a classifier ~ 87%.

Price, N.D. et al, PNAS (2007)
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TSP and survival of GIST patientsTSP and survival of GIST patientsTSP and survival of GIST patients
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OBSCN Expression & SurvivalOBSCN Expression & SurvivalOBSCN Expression & Survival
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A few general lessonsA few general lessonsA few general lessons
Choosing markers based on relative 
expression reversals of  gene pairs has proven 
to be very robust with high predictive 
accuracy in sets we have tested so far

Simple and independent of normalization
Easy to implement clinical test ultimately

All that’s needed is RT-PCR on two genes
M.D. Anderson Cancer Center is now further 
evaluating this test as part of its clinical 
biomarkers program –

 
so hopefully this will 

benefit patients in the near term
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Future DirectionsFuture DirectionsFuture Directions

Evaluate and extend methods based on 
relative expression reversals to:

Differentiate many diseases 
simultaneously
Evaluate more complex phenotypes 

Survival
Distant and local recurrence
Metastasis

Integrate with network information to 
inform types of comparisons to make
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