Sandia’s Programs in Supercomputing

and Nanotechnology

October 23, 2007

Sudip Dosanjh
Computer and Software Systems
Sandia National Laboratories
sudip@sandia.gov

WA | DQ&" for the United States Department of Energy’s National Nuclear Security Administration National

TN A AN Laboratories

i under contract DE-AC04-94AL85000.

National Nucloar Securily Administration

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, @ Sandia



4’ Science and Engineering Apps

« Continuum
— Computational fluid dynamics
— Shock physics (CTH)
— Arbitrary Lagrangian Eulerian (Alegra)
— Structural mechanics
— Combustion
— Device simulations
— E&M
 Radiation
— Enclosure radiation

 DAE
— Circuit Modeling
 Particles

— Molecular dynamics (LAMMPS)
— Particle-in-cell
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;fi Informatics is an Emerging App

Image Source:
T. Coffman,

S. Greenblatt,
S. Marcus,
Graph-based
technologies for
intelligence
analysis,
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(3, March 2004):
pp 45-47
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e
e Red Storm
Before Upgrade After Upgrade
* 10,880 2.0 GHz single-core * 13,600 2.4 GHz dual-core
AMD Opteron CPUs AMD Opteron CPUs
— 43.52 TF/s peak — 130.56 TF/s peak
« SeaStar 1.2 « SeaStar 2.1 network
 2-4 GB per socket — Doubled NIC bandwidth
* #9 on June 2006 Top 500 * 2-4 GB per socket
list * #3 on current Top 500 list
« Catamount LWK e Catamount LWK with

virtual node mode support

Link bandwidth/flop is still reasonable (approx. 1)
Some concerns about memory bandwidth/flop
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Catamount Virtual Node LWK
Performs Well on 7X Applications

Red Storm (SN vs. VN)
SN =1PElsocket, VN = 2PEisocket
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} Need Better Modeling

o Better prediction of application performance on
new architectures

 Trade-off studies to determine sensitivities to key
parameters
— Improved investment of NRE

* Design of future supercomputers
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Structural Simulation Toolkit (SST)

e Motivation

— Currently developing a simulation
environment to ...

» Provide validated baseline for future exploration HW _
Architectural
« Answer “What If” questions to guide future Results
design efforts SW

» Understand complex system-level interactions

» Goals
— Focus on parallel systems: HW & SW
— Quick turnaround
— Flexibility
e Multiple front-ends

— Execution driven
— Trace driven
* Multiple back-ends
— Explore novel architectures
(e.g. Multi-core, NIC, Memory)
— Support conventional architectures
(e.g. Single core, DDR)

— Reusable, Extensible, & Parallelizable

e Customers
— Micro-architects
— System Architects
— Application Performance Analysis
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SST: Structure

Front End
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Special

* Front-Ends & Back-Ends Joined by Processor/Thread Interface
« Enkidu “glues” back-end components
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SST: Capabilities and Components

Processor-in-Memory
Multithreaded Processor

EDRAM
DRAM

FBDIMM Channels

Conventional Processor
SMP/CMP Processors
Heterogeneous Proc

Programmable NIC

Simple Network

2D/3D Mesh Router
PIM NIC Processor

DMA Engine
PIM Network Interface g
NIC BUS
Memory Controller
Enkidu
Component
Processor —| ,,fl\
FAN
[ |
PIM Conventional Memory NIC Network
processor Processor Controller
i AN
Optional — T | | DMA Engine
SMP DRAM — Conventional
Processor PIM NIC MNIC
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Applying SST: Red Storm SeaStar NIC
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e Architectural Features

— Embedded 500 Mhz PPC440, local SRAM,
DMA Engines, NIC Bus

— High speed network interface to 3D mesh
router

— 800Mhz HyperTransport interface to CPU
— Host/NIC communicate through memory

 HyperTransport Modeling

— HyperTransport connection modeled at two

components

— HTLink models latency

— HTLink _bw models link bandwidth

* Models contention

» Tracks backlog of requests w/ simple BW
counting scheme

* Implements flow-control with finite request

queue

* Queue depth set to cover round-trip times and
allow full bandwidth

* NIC Modeling
— PPC 440: Used SimpleScalar
— Local SRAM: Existing SST component

— Tx/Rx DMA engines
» Existing component
* Respond to same commands at RS DMA
* Flow controlled
— HT Interface
» Connects CPU/NIC
— NIC Bus
» Connects internal NIC components

(PPC, SRAM, etc...)
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} Validating SST: Latency & Bandwidth
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» Used MPI “ping-pong” and OSU streaming BW
« Compared with real Seastar 1.2 and 2.1 chips

» Latency, message rate, and bandwidth
— within 5% for range of sizes
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Validating SST: Primitives

Routine Simulated Actual
PUT Command 0.486 0.592
tx_complete USER 0.196 0.154
rx_message ACK 0.959 1.002
rx_complete ACK 0.127 0.242
POST Command 0.477 0.442
rx_message USER 1.936 1.686
tx_complete ACK 0.114 0.118
rx_complete USER 0.230 0.378

e Sources of Error

— Small message optimization in Red Storm (<16 bytes)

— Lack of cache-line
— Processor model?

invalidation instruction

(™)
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Processor Speed
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» Vary NIC Bus Effect On Latency:
— 1/2 Bus Latency -> 8% latency reduction

e Vary HT Bus Effect On Latency:

— MPI latency increases linearly wit e |glr‘?a|
* 4 HT transactions per MPI mess lahoratmies



;lﬁ € Finding the Bottleneck: Computation,

.

Inst. Per Cycle
on

Branches. or Memory
DFS

-Wnthnut Prefetching el the nOde’ Memory
M With Prefetching performance is key
Memory Enhancements | Dottl e n e C k

*Even perfect branch
prediction and infinite
FUs would be less
valuable than

Processor Enhancements

0.5 . .
Improving memory
latency.
0 Base Bfﬂnch FU Ha\'! La{gﬂﬁ‘f Quarter Lat y -
S— g *Prefetching, caches

don’t help emerging
applications
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} Latency/Bandwidth Sensitivity

Latency & Bandwidth are both
constraining performance

IPC

Informatics Applications

Relative Latency ' 25

Relative Bandwidt

Scientific Applications

Emerging applications more
sensitive to Latency and Bandwidth

Halative Latency
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% Memory Operations Dominate

* FP ops (“Real work”) < 10% of Sandia codes
IIIIIIIII » Several Integer calculations, loads for each FP
load

 Memory and Integer Ops dominate

— ...and most integer ops are computing
memory addresses

 Theme: processing is now cheap, data
movement is expensive

g
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@ Branch @ IntAddr
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}‘ Application Characteristics
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Viewgraph from Portland Group

We Need a Change of Mindset

« FLOPS are “free”. In most cases we can now
compute on the data as fast as we can move
it.

« CPUs (cores) must be optimized for efficient
coordinated data movement.

« Compilers/tools must enable applications to
benefit from multi-core CPUs

« Applications should be designed to minimize
data movement.
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}‘ Issues

* Opportunity cost associated with building
such a machine

* |Industry interest in investigating different
packaging technologies at Sandia
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Example Prototype Machine

« 3D Stacked Homogeneous
Processing-In-Memory (PIM)
Array

— Hardware support for
multithreading/thread migration

| — Enhanced Synchronization
|

— Low latency/high bandwidth 3D
stacked memory system

— Highly scalable
» Tight integration with network
— Short vector processing

« Small Array (10’s-100’s of chips,
100’s of GBs of memory),
boards, software

e Industry collaboration for the

memory system
@ Sandia
National
Laboratories
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} Technical Challenges

 Architecture

— New Multithreaded Architecture

— New Synchronization Mechanisms

— New ISA
« System Software

— Thread and Global Address Space Management
* VLSI Implementation

— New (but simple!) architecture, power, validation
 Fabrication and Packaging

— 3D integration, network implementation (SERDES or optics)
 Algorithms and Applications

— Mapping to new architecture/programming model

— New Application Classes (e.g., informatics)
« Compilers and Programming Models

— Expressing multilevel parallelism and synchronization

— Lack of easy infrastructure for targeting new architectures
e System Integration

— Actually bringing a machine up in the lab @ Sandia
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M;ic'ro-Fab
S)_(sterr_l 0 people
Engineering 98,000 GSF,
Weapons Integrations Construction: $114M
Facility ' i $139M
374 people -
| 162 000 GSF -
Construction: $77M : : ) N
Eqmpment $16M “'-.'_‘*:.\_ £l 5 o -

Integrated Coﬂlocated Capability for =
DeS|gn Fabrlcatlon Packaglng

L s e

~MicroLab
274 people/
131,000 GSF

Construction: $55M

Equipment: $13M

TOTALS: 391,000 GSF 648 People

Construction: $246M Equipment: $168M
Contingency: $48M TEC: $462M
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Relevant Sandia Capabilities
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Micro lon Trap Fabrication R
« Design of micro ion traps

* Microfabrication of MEMS-
based micro ion traps

« Simulation of ion trap potentials
and ion trajectories

* Robust packaging of micro ion
trap arrays
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Integrated Micro-optic Elements

e Design, modeling, and
fabrication of MEMS-based
micro mirrors for micro-optic
applications

* Integration of micro mirrors and
solid-state waveguides

« Control algorithms for micro-
mirror oneration

Bls—
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Center for Integrated Nanotechnologies

Pt

%
Sandia National Laboratories ¢ Los Alamos National Laboratory

“One scientific community focused on nanoscience integration”

» World-class scientific staff
* Vibrant user community
o State-of-the-art facilities

A focused attack on nanoscience
integration challenges

 Leveraging Laboratories’ capabilities

* Developing & deploying innovative
approaches to nanoscale integration

* Discovery through application with a
diverse portfolio of customers
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' CINT Thrust Areas provide broad base
of expertise

Nanoelectronics & Nanophotonics: Complex FunctionalNanomaterials:
Precise control of electronic and Relationships between synthesis, structure

photonic wavefunctions and complex and emergent properties

Self-assembly .
on all length

Quantum-dot radii: 12 15 21

scales
I
Structure-
T -1 property
"i_“:mm:_\'.'(i‘-,\,{,‘ relationships
Nano-Bio-Micro Interfaces: ", rt\landqme:::amcs:h .
Biological principles & functions imported g Tstanding the mecnaflisyy
] o . . . behavior of nanostructured materials
into artificial bio-mimetic systems
. Molecular Tribology <4—»

£ Cu/Nb multilayers of Self-Assembled o0 Tip:200 nm
2 Monolayers
g
n
T
[
g
T
S

Aggregated receptors E

10-100 nm 2 Substrate Material
Surface Area/Volume (1/nm)
Theory & Simulation:

Theoretical, modeling and simulation techniques for
multiple length and time scales and functionality

Si surface

OTS
H coating
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}‘ Future challenges

« Data locality on chip
 Impact of programming models
 Accelerators
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