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Science and Engineering
 

Apps

• Continuum
– Computational fluid dynamics
– Shock physics (CTH)
– Arbitrary Lagrangian Eulerian (Alegra)
– Structural mechanics
– Combustion
– Device simulations
– E&M

• Radiation
– Enclosure radiation

• DAE
– Circuit Modeling

• Particles
– Molecular dynamics (LAMMPS)
– Particle-in-cell



Informatics is an Emerging App
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Red Storm

Before Upgrade

• 10,880 2.0 GHz single-core 
AMD Opteron CPUs
– 43.52 TF/s peak

• SeaStar 1.2
• 2-4 GB per socket
• #9 on June 2006 Top 500 

list
• Catamount LWK

After Upgrade

• 13,600 2.4 GHz dual-core 
AMD Opteron CPUs
– 130.56 TF/s peak

• SeaStar 2.1 network
– Doubled NIC bandwidth

• 2-4 GB per socket
• #3 on current Top 500 list
• Catamount LWK with 

virtual node mode support

Link bandwidth/flop is still reasonable (approx. 1)

 Some concerns about memory bandwidth/flop



Catamount Virtual Node LWK 
Performs Well on 7X Applications



Need Better Modeling

• Better prediction of application performance on 
new architectures

• Trade-off studies to determine sensitivities to key 
parameters
– Improved investment of NRE

• Design of future supercomputers



• Motivation
– Currently developing a simulation 

environment to ...
• Provide validated baseline for future exploration
• Answer “What If” questions to guide future 

design efforts
• Understand complex system-level interactions

Structural Simulation Toolkit (SST)

HW

SW

Architectural
Results

• Customers
– Micro-architects
– System Architects
– Application Performance Analysis

• Goals
– Focus on parallel systems: HW & SW
– Quick turnaround
– Flexibility

• Multiple front-ends
– Execution driven
– Trace driven

• Multiple back-ends
– Explore novel architectures 

(e.g. Multi-core, NIC, Memory)
– Support conventional architectures 

(e.g. Single core, DDR)

– Reusable, Extensible, & Parallelizable



• Front-Ends & Back-Ends Joined by Processor/Thread Interface
• Enkidu “glues” back-end components

SST: Structure



SST: Capabilities and Components

Processor-in-Memory
Multithreaded Processor

EDRAM
DRAM

FBDIMM Channels
PIM Network Interface

Memory Controller

Conventional Processor
SMP/CMP Processors
Heterogeneous Proc

Programmable NIC
Simple Network

2D/3D Mesh Router
PIM NIC Processor

DMA Engine
NIC BUS



• Architectural Features
– Embedded 500 Mhz PPC440, local SRAM, 

DMA Engines, NIC Bus
– High speed network interface to 3D mesh 

router
– 800Mhz HyperTransport interface to CPU
– Host/NIC communicate through memory

Applying SST: Red Storm SeaStar NIC

• HyperTransport Modeling
– HyperTransport connection modeled at two 

components
– HTLink models latency
– HTLink_bw models link bandwidth

• Models contention
• Tracks backlog of requests w/ simple BW 

counting scheme
• Implements flow-control with finite request 

queue
• Queue depth set to cover round-trip times and 

allow full bandwidth

• NIC Modeling
– PPC 440: Used SimpleScalar
– Local SRAM: Existing SST component
– Tx/Rx DMA engines

• Existing component
• Respond to same commands at RS DMA
• Flow controlled

– HT Interface
• Connects CPU/NIC

– NIC Bus
• Connects internal NIC components 

(PPC, SRAM, etc...)



• Used MPI “ping-pong” and OSU streaming BW
• Compared with real Seastar 1.2 and 2.1 chips
• Latency, message rate, and bandwidth

– within 5% for range of sizes

Validating SST: Latency & Bandwidth



Validating SST: Primitives

Routine Simulated Actual

PUT Command 0.486 0.592

tx_complete USER 0.196 0.154

rx_message ACK 0.959 1.002

rx_complete ACK 0.127 0.242

POST Command 0.477 0.442

rx_message USER 1.936 1.686

tx_complete ACK 0.114 0.118

rx_complete USER 0.230 0.378

• Sources of Error
– Small message optimization in Red Storm (<16 bytes)
– Lack of cache-line invalidation instruction
– Processor model?
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NIC Bus
Processor Speed

• Vary NIC Bus Effect On Latency:
– 1/2 Bus Latency -> 8% latency reduction

• Vary HT Bus Effect On Latency:
– MPI latency increases linearly with HT latency

• 4 HT transactions per MPI message

• Vary HT Bus Effect On Bandwidth:
– No effect to small messages
– Does effect peak bandwidth

• Vary NIC Clock Rate Effect On Latency:
– 2X NIC Clock -> 30% improvement in latency
– 4X NIC Clock -> 50% improvement

Varying NIC Clk Freq

Varying HT BW

Varying HT LatencyVarying NIC Bus Latency



Finding the Bottleneck: Computation, 
Branches, or Memory
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•In the node, Memory 
performance is key 
bottleneck

•Even perfect branch 
prediction and infinite 
FUs would be less 
valuable than 
improving memory 
latency. 

•Prefetching, caches 
don’t help emerging 
applications



Latency/Bandwidth Sensitivity

Scientific Applications

Emerging applications more 
sensitive to Latency and Bandwidth

Informatics Applications

Latency & Bandwidth are both 
constraining performance



Memory Operations Dominate
• FP ops (“Real work”) < 10% of Sandia codes
• Several Integer calculations, loads for each FP 

load
• Memory and Integer Ops dominate

– ...and most integer ops are computing 
memory addresses

• Theme: processing is now cheap, data 
movement is expensive

Instruction 
Mix

Integer 
Instruction 

Usage



Application Characteristics



We Need a Change of Mindset
• FLOPS are “free”.  In most cases we can now 

compute on the data as fast as we can move 
it.

• CPUs (cores) must be optimized for efficient 
coordinated data movement.

• Compilers/tools must enable applications to 
benefit from multi-core CPUs

• Applications should be designed to minimize 
data movement.

Viewgraph from Portland Group



Issues

• Opportunity cost associated with building 
such a machine

• Industry interest in investigating different 
packaging technologies at Sandia 



Example Prototype Machine
• 3D Stacked Homogeneous 

Processing-In-Memory (PIM) 
Array
– Hardware support for 

multithreading/thread migration
– Enhanced Synchronization
– Low latency/high bandwidth 3D 

stacked memory system
– Highly scalable

• Tight integration with network
– Short vector processing

• Small Array (10’s-100’s of chips, 
100’s of GBs of memory), 
boards, software

• Industry collaboration for the 
memory system
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Technical Challenges
• Architecture

– New Multithreaded Architecture
– New Synchronization Mechanisms
– New ISA

• System Software
– Thread and Global Address Space Management

• VLSI Implementation
– New (but simple!) architecture, power, validation

• Fabrication and Packaging
– 3D integration, network implementation (SERDES or optics)

• Algorithms and Applications
– Mapping to new architecture/programming model
– New Application Classes (e.g., informatics)

• Compilers and Programming Models
– Expressing multilevel parallelism and synchronization
– Lack of easy infrastructure for targeting new architectures

• System Integration
– Actually bringing a machine up in the lab



TOTALS:  391,000 GSF

 

648 People

Construction:

 

$246M

 

Equipment: $168M
Contingency:

 

$48M

 

TEC:  $462M

Construction:  $77M
Equipment:      $16M

Construction:  $55M
Equipment:      $13M

Components

System 
Engineering

Science
MicroLab

274 people
131,000 GSF

MicroFab
0 people

98,000 GSF

Weapons Integration 
Facility

374 people
162,000 GSF

Construction:  $114M
Equipment:      $139M

Integrated, Co-located

 

Capability for 
Design, Fabrication, Packaging



Relevant Sandia Capabilities

Micro Ion Trap Fabrication
• Design of micro ion traps
• Microfabrication of MEMS- 

based micro ion traps
• Simulation of ion trap potentials 

and ion trajectories
• Robust packaging of micro ion 

trap arrays

Integrated Micro-optic Elements
• Design, modeling, and 

fabrication of MEMS-based 
micro mirrors for micro-optic 
applications

• Integration of micro mirrors and 
solid-state waveguides

• Control algorithms for micro- 
mirror operation
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Center for Integrated Nanotechnologies
Sandia National Laboratories  • Los Alamos National Laboratory

“One scientific community focused on nanoscience integration”

• World-class scientific staff
• Vibrant user community
• State-of-the-art facilities
• A focused attack on nanoscience 

integration challenges 
• Leveraging Laboratories’

 

capabilities
• Developing & deploying innovative 

approaches to nanoscale integration
• Discovery through application with a 

diverse portfolio of customers
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Nanoelectronics & Nanophotonics:
Precise control of electronic and

photonic wavefunctions

Quantum-dot radii:  12 �       15 �      21 �

Nano-Bio-Micro Interfaces:
Biological principles & functions imported

into artificial bio-mimetic systems

Aggregated receptors

10 -100 nm 

DSPC

1-10 nm
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Probe Tip-200 nm

Substrate Material

Molecular Tribology
of Self-Assembled

Monolayers

Nanomechanics:
Understanding the mechanical

behavior of nanostructured materials

Si surface

OTS
coating

Theory & Simulation:
Theoretical, modeling and simulation techniques for

multiple length and time scales and functionality

Complex Functional Nanomaterials:
Relationships between synthesis, structure

and complex and emergent properties
Self-assembly 
on all length 
scales 

ξ∼1nm
λ∼150nm

Structure-

 

property 
relationships 

CINT Thrust Areas provide broad baseCINT Thrust Areas provide broad base 
of expertiseof expertise



Future challenges

• Data locality on chip
• Impact of programming models
• Accelerators
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