
Programming Techniques to
Harness Exaflops

Kathy Yelick
U.C. Berkeley and LBNL

How to Waste a Zettaflop

machine

#1: Insufficient Memory Bandwidth

• Required bandwidth depends on the algorithm
• Need hardware designed to algorithmic needs

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

Time to fill 1/2 mem (usec)
Time to matmul on 1/2 mem (usec)
Time to FFT on 1/2 mem (usec)
Time to Stencil (usec)
Time for N^2 particle method

#2: Ignore Little’s Law

Name Clovertown Opteron Cell
Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8
Architecture 4-/3-issue, 2-/1-SSE3, OOO,

caches, prefetch
2-VLIW, SIMD, local

RAM, DMA
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz
Peak MemBW 21.3 GB/s 21.3 25.6 GB/s
Peak GFLOPS 74.6 GF 17.6 GF 14.6 (DP Fl. Pt.)
Naïve SpMV

(median of
many matrices)

1.0 GF 0.6 GF --

Efficiency % 1% 3% --
Autotune SpMV 1.5 GF 1.9 GF 3.4 GF
Auto Speedup 1.5X 3.2X ∞

NERSC SSP Applications

Single vs. Dual Core Performanc
(wallclock time)

0

500

1000

1500

2000

2500

3000

3500

4000

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

XT3 SC
XT3 DC

Performance drop (sing

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

CAM MILC GTC GAMESSPARATECPMEMDMadBenchBB3D Cactus

Applicat

• Still 10% drop on average when halving
memory bandwidth!
– #$%^&* application developers write crummy

code!
– Lets pick an application that I KNOW is

memory bandwidth bound!

Why is the STI Cell So Efficient?
 (Latency Hiding with Software Controlled Memory)

• Performance of Standard Cache Hierarchy
– Cache hierarchies underutilize memory bandwidth due to inability

to tolerate latency
– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)
– But in practice, access patterns are for shorter stanzas: so never reaches peak bandwidth (still latency limited)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat response for a variety of access patterns
– Response is nearly full memory bandwidth can be utilized for all

access patterns
– Cell memory requests can be nearly completely hidden behind the computation due to asynchronous DMA

engines
– Performance model is simple and deterministic (much simpler than

modeling a complex cache hierarchy),
min{time_for_memory_ops, time_for_core_exec}

– Problem: lack of tractable/broadly applicable programming model

Cell STRIAD (64KB concurrency)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

16 32 64 128 256 512 1024 2048

stanza size

1 SPE 2 SPEs 3 SPEs 4 SPEs
5 SPEs 6 SPEs 7 SPEs 8 SPEs

#3: Unnecessarily Synchronize Communication

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
La

te
nc

y
(u

se
c)

MPI ping-pong
GASNet put+sync

Use a programming model in which you can’t utilize
bandwidth or “low”

latency

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI
GASNet

NAS FT Variants Performance Summary

• Slab is always best for MPI; small
message cost too high

• Pencil is always best for UPC; more
l

0

200

400

600

800

1000

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F

lo
ps

 p
er

 T
hr

ea
d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

.5 Tflops

Myrinet Infiniband Elan3 Elan3

Elan4 Elan4
#procs

64 256 256

512 256 512

M
Fl

op
s

pe
r T

hr
ea

d

Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

How to Efficiently Use a Zettascale

System

• Rethink hardware
– Parallelism is mainstream, but most cores are

optimized for serial performance
– Need to design hardware for power and parallelism

• Rethink software
– Massive parallelism
– Eliminate scaling bottlenecks replication,

synchronization
• Rethink algorithms

– Massive parallelism and locality
– Counting Flops is the wrong measure

To Virtualize

or Not

• The fundamental question facing in parallel
programming models is:

What should be virtualized?
• Hardware has finite resources

– Processor count is finite
– Registers count is finite
– Fast local memory (cache) size is finite
– Links in network topology are generally < n2

• Does the programming model
(language+libraries) expose this or hide it?

A Brief History of Languages

• When vector machines were king
– Parallel “languages”

were loop annotations (IVDEP)
– Performance was fragile, but there was good user support

• When SIMD machines were king
– Data parallel languages popular and successful (CMF, *Lisp, C*, …)
– Quite powerful: can handle irregular data (sparse mat-vec

multiply)
– Irregular computation is less clear (multi-physics, adaptive meshes,

backtracking search, sparse matrix factorization)

• When shared memory machines (SMPs) were king
– Shared memory models, e.g., OpenMP, Posix

Threads, are popular

• When clusters took over
– Message Passing (MPI) became dominant

We are at the mercy of HW, but SW takes the blame.

Two Parallel Language Questions

• What is the parallel control model?

• What is the model for sharing/communication?

implied synchronization for message passing, not shared memory

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing

Strategies for Zettascale

Software

Rethink our Software Models

Program Synthesis

• Autotuning: self-tuning code
– Can select from

algorithms/data structures
changes not producible by
compiler transform

• Needs extensive tuning knobs for writing basic code
• Don’t do this by hand: tools for tuning

Optimized code
(tiled, prefetched,

time skewed)

Spec: simple
implementation

(3 loop 3D stencil)

Sketch: optimized
skeleton

(5 loops, missing
some index/bounds)

Tools for Efficiency: Autotuning

• Automatic performance tuning
– Use machine time in place of human time for tuning
– Search over possible implementations
– Use performance models to restrict search space
– Autotuned

libraries for dwarfs (up to 10x speedup)

Block size (n0

x
m0

) for dense
matrix-matrix
multiply

• Spectral (FFTW, Spiral)
• Dense (PHiPAC, Atlas)
• Sparse (Sparsity, OSKI)
• Stencils/structured grids

– Are these compilers?
• Don’t transform source
• There are compilers that

use this kind of search
• But not for the sparse

case (transform matrix)

Optimization:
1.5x more entries (zeros)

1.5x speedup

Compilers won’t do this!

Sparse Matrices on MulticoreClovertown

0.0

0.5

1.0

1.5

2.0

2.5
D
en

se

P
ro

te
in

FE
M

-S
ph

r
FE

M
-C

an
t

Tu
nn

el
FE

M
-H

ar

Q
C
D

FE
M

-S
hi

p

Ec
o
no

m

Ep
id

em
FE

M
-A

cc
el

C
ir
cu

it
W

eb
ba

se LP

M
ed

ia
n

G
F
lo

p
/
s

1Core Naïve 1Core PF

1Core PF,RB 1Core PF,RB,CB

2Core 4Core

AMD X2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

se

P
ro

te
in

FE
M

-S
ph

r
FE

M
-C

an
t

Tu
nn

el

FE
M

-H
ar

Q
C
D

FE
M

-S
hi

p

Ec
o
no

m

Ep
id

em
FE

M
-A

cc
el

C
ir
cu

it
W

eb
ba

se LP

M
ed

ia
n

G
F
lo

p
/
s

1Core Naïve 1Core PF

1Core PF,RB 1Core PF,RB,CB

2Core

Autotuning boosts performance of single and multiple cores

Sparse Matrices on MulticoreClovertown

0.0

0.5

1.0

1.5

2.0

2.5
D
en

se

P
ro

te
in

FE
M

-S
ph

r
FE

M
-C

an
t

Tu
nn

el
FE

M
-H

ar

Q
C
D

FE
M

-S
hi

p

Ec
o
no

m

Ep
id

em
FE

M
-A

cc
el

C
ir
cu

it
W

eb
ba

se LP

M
ed

ia
n

G
F
lo

p
/
s

1Core Naïve 1Core PF

1Core PF,RB 1Core PF,RB,CB

2Core 4Core

2Socket x 4Core

AMD X2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

se

P
ro

te
in

FE
M

-S
ph

r
FE

M
-C

an
t

Tu
nn

el
FE

M
-H

ar

Q
C
D

FE
M

-S
hi

p

Ec
o
no

m

Ep
id

em
FE

M
-A

cc
el

C
ir
cu

it
W

eb
ba

se LP

M
ed

ia
n

G
F
lo

p
/
s

1Core Naïve 1Core PF

1Core PF,RB 1Core PF,RB,CB

2Core 2Socket x 2Core

Autotuning boosts performance of multiple socket SMPs

Sparse Matrices on Multicore

AMD X2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

se

P
ro

te
in

FE
M

-S
ph

r
FE

M
-C

an
t

Tu
nn

el
FE

M
-H

ar

Q
C
D

FE
M

-S
hi

p

Ec
o
no

m

Ep
id

em
FE

M
-A

cc
el

C
ir
cu

it
W

eb
ba

se LP

M
ed

ia
n

G
F
lo

p
/
s

1Core Naïve 1Core PF
1Core PF,RB 1Core PF,RB,CB
2Core 2Socket x 2Core
2Core Naïve MPI + OSKI

Clovertown

0.0

0.5

1.0

1.5

2.0

2.5
D
en

se

P
ro

te
in

FE
M

-S
ph

r
FE

M
-C

an
t

Tu
nn

el
FE

M
-H

ar

Q
C
D

FE
M

-S
hi

p

Ec
o
no

m

Ep
id

em
FE

M
-A

cc
el

C
ir
cu

it
W

eb
ba

se LP

M
ed

ia
n

G
F
lo

p
/
s

1Core Naïve 1Core PF
1Core PF,RB 1Core PF,RB,CB
2Core 4Core
2Socket x 4Core 2Core Naïve
MPI+OSKI

Autotuning is more important than parallelism! And don’t think running MPI process per core is good enough
for performance.

What About PGAS Languages?

• Global address space: any thread/process may
directly read/write data allocated by another

• Partitioned: data is designated as local (near) or
global (possibly far); programmer controls layout

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

• Processor per core will shrink: need to avoid
replication of system and application structures

What about HPCS Languages?

• Chapel (Cray), X10 (IBM), and Fortress (Sun) were
developed in HPCS program

• Are these languages “compilable”?
– Yes, in principle; easier than HPF
– Source-to-source model is proven
– But still need work

• Several interesting differences (Java, all-new, etc.)
• Several interesting similarities

– PGAS memory model
– Dynamic (non SPMD) execution model
– Mixed task and data parallelism

• When does this dynamic model help?
– It does create a runtime challenge not yet “solved”

Matrix Factorization: Cautionary Tale

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Completed part of U

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Joint work with Parry Husbands

Panel being factored

• Current PGAS languages use static parallelism model (SPMD)
• Parallel matches address space partition
• LU factorization (sparse and dense) has highly irregular task graph

UPC HP Linpack

Performance

X1 UPC vs. MPI/HPL

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
Fl

op
/s

MPI/HPL

UPC

Opteron
cluster
UPC vs.
MPI/HPL

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix UPC.
Vs.

MPI/HPL

0

20

40

60

80

100

120

140

160

Alt/32

G
Fl

op
/s

MPI/HPL

UPC

•Comparable to MPI HPL (numbers from HPCC database)
•Faster than ScaLAPACK due to less synchronization
•Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p
Joint work with Parry Husbands

UPC vs.
ScaLAPACK

0

20

40

60

80

2x4 pr oc gr i d 4x4 pr oc gr i d

G
Fl

op
s

ScaLAPACK

UPC

Virtualization of Processors

• Highly multithreaded LU code is:
– Roughly 2x faster than bulk-

 synchronous
– As fast as MPI with limited asynchrony

• Experience
– Highly tuned thread schedule for LU
– Not yet there for sparse Cholesky

• Conclusion: multithreading is great,
but software needs control over
scheduling

New Programming Models

• Science is currently limited by the difficulty of
programming
– Codes get written somehow, but barrier to

algorithm experimentation is too high
– Multicore shift will make this worse: The

application scientists have other things to do that
worry about the next hw revolution

• Want an integrated programming model:
– Express many levels and kinds of parallelism for

multiple machine generations
– Painful reprogramming should only be done once

Technical Challenges in Programming Models

• Open problems in language runtimes
– Virtualization: away from SPMD model for load

balance, fault tolerance, OS noise, etc.
– Resource management: thread scheduler

• What we do know how to do:
– Build systems with dynamic load balancing

(Cilk) that do not respect locality
– Build systems with rigid locality control (MPI,

UPC, etc.) that run at the speed of the slowest
component

– Put the programmer in control of resources:
message buffers, dynamic load balancing

Rethink Algorithms

Latency and Bandwidth-Avoiding

• New optimal ways to implement Krylov

subspace
methods on parallel and sequential computers
– Replace x → Ax by x → [Ax,A2x,…Akx]
– Change GMRES, CG, Lanczos, …

accordingly
• Theory

– Minimizes network latency costs on parallel machine
– Minimizes memory bandwidth and latency costs on

sequential machine
• Performance models for 2D problem

– Up to 7x (overlap) or 15x (no overlap) speedups on BG/P
• Measure speedup: 3.2x for out-of-core

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal

Can be computed without communication
k=8 fold reuse of A

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8
Price: redundant work

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Reduce redundant work by half

Latency Avoiding Parallel Kernel for
 [x, Ax, A2x, …

, Akx]

• Compute locally dependent entries
 needed by neighbors

• Send data to neighbors, receive from
neighbors

• Compute remaining locally
dependent entries

• Wait for receive
• Compute remotely dependent entries

Fundamental Algorithm Change

• Use of matrix powers kernels is useful for
performance
– Reduces message count
– Reduces memory bandwidth and latency

• Using traditional iterative methods, loses
stability
– Change of algorithm (basis) reclaims stability

• Conclusion: rethink algorithms from the
ground up

Approach for Programming Models

• Work on programming model now
• Start with two Zettaflop

apps

– One easy: if anything scale, this will
– One hard: plenty of parallelism, but it’s irregular,

adaptive, asynchronous
• Rethink algorithms

– Scalability at all levels (including algorithmic)
– Reducing bandwidth (compress data structures);

reducing latency requirements
• Design programming model to express this

parallelism
– Develop technology to automate as much as possible

(parallelism, HL constructs, search-based optimization)
• Consider spectrum of hardware possibilities

– Analyze at various levels of detail (eliminating when
they are clearly infeasible)

– Early prototypes (expect 90% failures) to validate

Questions?

	Programming Techniques to Harness Exaflops
	How to Waste a Zettaflop machine
	#1: Insufficient Memory Bandwidth
	#2: Ignore Little’s Law
	NERSC SSP Applications
	Why is the STI Cell So Efficient?�(Latency Hiding with Software Controlled Memory)
	#3: Unnecessarily Synchronize Communication
	NAS FT Variants Performance Summary
	How to Efficiently Use a Zettascale System
	To Virtualize or Not
	A Brief History of Languages
	Two Parallel Language Questions
	Strategies for Zettascale Software
	Program Synthesis
	Tools for Efficiency: Autotuning
	Slide Number 16
	Slide Number 17
	Slide Number 18
	What About PGAS Languages?
	What about HPCS Languages?
	Matrix Factorization: Cautionary Tale
	UPC HP Linpack Performance
	Virtualization of Processors
	New Programming Models
	Technical Challenges in Programming Models
	Rethink Algorithms
	Latency and Bandwidth-Avoiding
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Latency Avoiding Parallel Kernel for�[x, Ax, A2x, … , Akx]
	Fundamental Algorithm Change
	Approach for Programming Models
	Questions?

