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How to Waste a Zettaflop
 

machine



#1: Insufficient Memory Bandwidth

• Required bandwidth depends on the algorithm
• Need hardware designed to algorithmic needs
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#2: Ignore Little’s Law

Name Clovertown Opteron Cell
Chips*Cores 2*4 = 8 2*2 = 4 1*8 = 8
Architecture 4-/3-issue, 2-/1-SSE3, OOO, 

caches, prefetch
2-VLIW, SIMD, local 

RAM, DMA
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz
Peak  MemBW 21.3 GB/s 21.3 25.6 GB/s
Peak  GFLOPS 74.6 GF 17.6 GF 14.6 (DP Fl. Pt.)
Naïve SpMV

 

(median of 
many matrices)

1.0 GF 0.6 GF --

Efficiency % 1% 3% --
Autotune SpMV 1.5 GF 1.9 GF 3.4 GF
Auto Speedup 1.5X 3.2X ∞



NERSC SSP Applications

Single vs. Dual Core Performanc
(wallclock time)
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• Still 10% drop on average when halving 
memory bandwidth!
– #$%^&* application developers write crummy 

code!
– Lets pick an application that I KNOW is 

memory bandwidth bound!



Why is the STI Cell So Efficient?
 (Latency Hiding with Software Controlled Memory)

• Performance of Standard Cache Hierarchy
– Cache hierarchies underutilize memory bandwidth due to inability

 

to tolerate latency
– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)
– But in practice, access patterns are for shorter stanzas: so never reaches peak bandwidth (still latency limited)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat response for a variety of access patterns
– Response is nearly full memory bandwidth can be utilized for all

 

access patterns
– Cell memory requests can be nearly completely hidden behind the computation due to asynchronous DMA 

engines
– Performance model is simple and deterministic (much simpler than

 

modeling a complex cache hierarchy), 
min{time_for_memory_ops, time_for_core_exec}

– Problem: lack of tractable/broadly applicable programming model

Cell STRIAD (64KB concurrency)
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#3: Unnecessarily Synchronize Communication

8-byte Roundtrip Latency
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NAS FT Variants Performance Summary

• Slab is always best for MPI; small 
message cost too high

• Pencil is always best for UPC; more 
l
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How to Efficiently Use a Zettascale
 

System

• Rethink hardware
– Parallelism is mainstream, but most cores are 

optimized for serial performance
– Need to design hardware for power and parallelism

• Rethink software
– Massive parallelism
– Eliminate scaling bottlenecks replication, 

synchronization
• Rethink algorithms

– Massive parallelism and locality
– Counting Flops is the wrong measure



To Virtualize
 

or Not

• The fundamental question facing in parallel 
programming models is:

What should be virtualized?
• Hardware has finite resources

– Processor count is finite
– Registers count is finite
– Fast local memory (cache) size is finite
– Links in network topology are generally < n2

• Does the programming model 
(language+libraries) expose this or hide it?



A Brief History of Languages

• When vector machines were king
– Parallel “languages”

 

were loop annotations (IVDEP) 
– Performance was fragile, but there was good user support

• When SIMD machines were king
– Data parallel languages popular and successful (CMF, *Lisp, C*, …)
– Quite powerful: can handle irregular data (sparse mat-vec

 

multiply)
– Irregular computation is less clear (multi-physics, adaptive meshes, 

backtracking search, sparse matrix factorization)

• When shared memory machines (SMPs) were king
– Shared memory models, e.g., OpenMP, Posix

 

Threads, are popular

• When clusters took over
– Message Passing (MPI) became dominant

We are at the mercy of HW, but SW takes the blame.



Two Parallel Language Questions

• What is the parallel control model?

• What is the model for sharing/communication?

implied synchronization for message passing, not shared memory

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing



Strategies for Zettascale
 

Software

Rethink our Software Models



Program Synthesis

• Autotuning: self-tuning code
– Can select from 

algorithms/data structures 
changes not producible by 
compiler transform

• Needs extensive tuning knobs for writing basic code
• Don’t do this by hand: tools for tuning

Optimized code
(tiled, prefetched, 

time skewed)

Spec: simple 
implementation

(3 loop 3D stencil)

Sketch: optimized
skeleton

(5 loops, missing 
some index/bounds)



Tools for Efficiency: Autotuning

• Automatic performance tuning
– Use machine time in place of human time for tuning
– Search over possible implementations
– Use performance models to restrict search space 
– Autotuned

 
libraries for dwarfs (up to 10x speedup)

Block size (n0

 

x 
m0

 

) for dense 
matrix-matrix 
multiply

• Spectral (FFTW, Spiral)
• Dense (PHiPAC, Atlas)
• Sparse (Sparsity, OSKI)
• Stencils/structured grids

– Are these compilers?
• Don’t transform source
• There are compilers that 

use this kind of search
• But not for the sparse 

case (transform matrix)

Optimization:
1.5x more entries (zeros)

1.5x speedup

Compilers won’t do this!



Sparse Matrices on MulticoreClovertown
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Sparse Matrices on MulticoreClovertown
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AMD X2
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Sparse Matrices on Multicore
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Autotuning is more important than parallelism! And don’t think running MPI process per core is good enough 
for performance.



What About PGAS Languages?

• Global address space: any thread/process may 
directly read/write data allocated by another

• Partitioned: data is designated as local (near) or 
global (possibly far); programmer controls layout 
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• Processor per core will shrink: need to avoid 
replication of system and application structures



What about HPCS Languages?

• Chapel (Cray), X10 (IBM), and Fortress (Sun) were 
developed in HPCS program

• Are these languages “compilable”?
– Yes, in principle; easier than HPF
– Source-to-source model is proven
– But still need work

• Several interesting differences (Java, all-new, etc.)
• Several interesting similarities

– PGAS memory model
– Dynamic (non SPMD) execution model
– Mixed task and data parallelism

• When does this dynamic model help?
– It does create a runtime challenge not yet “solved”



Matrix Factorization: Cautionary Tale

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Completed part of U

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Joint work with Parry Husbands

Panel being factored

• Current PGAS languages use static parallelism model (SPMD)
• Parallel matches address space partition
• LU factorization (sparse and dense) has highly irregular task graph



UPC HP Linpack
 

Performance

X1 UPC vs. MPI/HPL
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Virtualization of Processors

• Highly multithreaded LU code is:
– Roughly 2x faster than bulk-

 synchronous
– As fast as MPI with limited asynchrony

• Experience
– Highly tuned thread schedule for LU
– Not yet there for sparse Cholesky

• Conclusion: multithreading is great, 
but software needs control over 
scheduling



New Programming Models

• Science is currently limited by the difficulty of 
programming
– Codes get written somehow, but barrier to 

algorithm experimentation is too high
– Multicore shift will make this worse: The 

application scientists have other things to do that 
worry about the next hw revolution

• Want an integrated programming model:
– Express many levels and kinds of parallelism for 

multiple machine generations
– Painful reprogramming should only be done once



Technical Challenges in Programming Models

• Open problems in language runtimes
– Virtualization: away from SPMD model for load 

balance, fault tolerance, OS noise, etc.
– Resource management: thread scheduler

• What we do know how to do:
– Build systems with dynamic load balancing 

(Cilk) that do not respect locality
– Build systems with rigid locality control (MPI, 

UPC, etc.) that run at the speed of the slowest 
component

– Put the programmer in control of resources: 
message buffers, dynamic load balancing



Rethink Algorithms



Latency and Bandwidth-Avoiding

• New optimal ways to implement Krylov
 

subspace 
methods on parallel and sequential computers
– Replace x → Ax   by  x → [Ax,A2x,…Akx]
– Change GMRES, CG, Lanczos, …

 

accordingly 
• Theory 

– Minimizes network latency costs on parallel machine
– Minimizes memory bandwidth and latency costs on 

sequential machine
• Performance models for 2D problem

– Up to 7x (overlap) or 15x (no overlap) speedups on BG/P
• Measure speedup: 3.2x for out-of-core
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Latency Avoiding Parallel Kernel for
 [x, Ax, A2x, …

 
, Akx]

• Compute locally dependent entries
 needed by neighbors

• Send data to neighbors, receive from 
neighbors

• Compute remaining locally 
dependent entries

• Wait for receive
• Compute remotely dependent entries



Fundamental Algorithm Change

• Use of matrix powers kernels is useful for 
performance
– Reduces message count
– Reduces memory bandwidth and latency

• Using traditional iterative methods, loses 
stability
– Change of algorithm (basis) reclaims stability

• Conclusion: rethink algorithms from the 
ground up



Approach for Programming Models

• Work on programming model now 
• Start with two Zettaflop

 
apps

– One easy: if anything scale, this will
– One hard: plenty of parallelism, but it’s irregular, 

adaptive, asynchronous
• Rethink algorithms

– Scalability at all levels (including algorithmic)
– Reducing bandwidth (compress data structures); 

reducing latency requirements
• Design programming model to express this 

parallelism
– Develop technology to automate as much as possible 

(parallelism, HL constructs, search-based optimization)
• Consider spectrum of hardware possibilities

– Analyze at various levels of detail (eliminating when 
they are clearly infeasible)

– Early prototypes (expect 90% failures) to validate



Questions?
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