
FEC 2007 Copyright 2007, Cray Inc. 1

Future Supercomputer
Architectures

Steve Scott
Cray CTO

Frontiers of Extreme Computing 2007
Santa Cruz, CA

October 21-25, 2007

FEC 2007 Copyright 2007, Cray Inc. 2

Where Are We Today?
O(100 TF) systems
Two designs at the top end:

• IBM Blue Gene: custom 3D torus, SOC design w/ embedded PowerPC
processors, relatively slower/lower power processors and smaller node
memories, COTS memory chips

• Cray XT4: custom 3D torus, COTS x86-64 processor, COTS memory
DIMMS, higher W per peak flop, but similar W/delivered flop

Multi-core scalar CMOS processors
Programming model is C and Fortran with MPI (some OpenMP)
GPFS and Lustre parallel file systems

Petaflop systems will be straight-forward extrapolations:
• O(20K x86 sockets), O(100K BlueGene sockets)
• 4-8 cores per socket

Key issues:
• Application scaling and tuning
• System software tuning and maturing

FEC 2007 Copyright 2007, Cray Inc. 3

March to a Lottaflop
Milestones: Peak, Linpack, Application, Broad set of apps
Easy: just wait till 2009 for a Linpack petaflop, 2019 for an exaflop, 2030
for a zettaflop (right?)

Not constant cost,
size or power

FEC 2007 Copyright 2007, Cray Inc. 4

Major Processor Inflection Point
Have pushed pipelining about as far as practical
Have mined most of the available instruction level parallelism
⇒ Benefit of more complex processors has significantly diminished

Power becoming the issue (both heat density and electricity cost)
⇒ Must moderate frequencies
⇒ Focus on parallel performance vs. fast thread performance

Flops getting increasingly cheap relative to bandwidth
• Energy cost of moving data (even across chip) dwarfs that of computation
⇒ Okay to overprovision flops to maximum utilization of memory bandwidth

(but even flops are too power hungry at the exascale)
Wire delay starting to dominate over transistor delay
⇒ Can’t treat whole chip as single processor; must exploit locality

Commercial response has been to go multi-core
• Helps alleviate many of these problems

Keeps processors simpler and smaller
• Will work likely work well on many applications

Transaction processing, web serving
Highly scalable, dense, regular, blockable, well load-balanced, HPC applications

FEC 2007 Copyright 2007, Cray Inc. 5

Concerns With Multicore
Rapidly increasing number of processors per system

• Million-thread MPI applications, anyone?
Contention for bandwidth off chip

• Ratios are continuing to worsen
Synchronization, load balancing and managing parallelism across cores

• Synchronization is very expensive/heavyweight in traditional processors
• Dynamic problems create severe load imbalances, which require

sophisticated runtime software, synchronization and bandwidth to address
Memory latency continues to grow and is becoming more variable

• Traditional processors are not latency tolerant
Still a lot of control overhead in conventional processors

• Complex pipelines, extensive prediction schemes, highly associative cache
hierarchies, replay logic, high instruction processing bandwidth, etc.

• Flies in the face of efficient parallel performance

Lots of experimentation with alternative microarchitectures and
accelerators

FEC 2007 Copyright 2007, Cray Inc. 6

So, Can We Just Pack Chips with Flops?
Key is making the system easily programmable
Must balance peak computational power with generality

• How easy is it to map high level code onto the machine?
• How easy is it for computation units to access global data?
• Machine-specific tuning or code mods required?

Some examples:
• FPGAs, Clearspeed CSX600, IBM Cell, GP-GPUs
• All require significant changes to the source code
• None have a whole program compiler

Flop efficiency vs. generality/programmability spectrum:
• Qualitative only
• Also influenced by memory architecture, memory system and network

More
programmable

More
area/power

efficient FPGAs Cell

GP-GPU Clearspeed
General
Purpose

μprocsStreaming

Multi-core

Vectors

BG/L

Resolving this tension is the primary challenge of computer architecture over the next decade.

FEC 2007 Copyright 2007, Cray Inc. 7

Opportunities to Exploit Heterogeneity
Applications vary considerably in their demands
Any HPC application contains some form of parallelism
• Many HPC apps have rich, SIMD-style data-level parallelism

Can significantly accelerate via vectorization
• Those that don’t generally have rich thread-level parallelism

Can significantly accelerate via multithreading
• Some parts of applications are not parallel at all

Need fast serial scalar execution speed (Amdahl’s Law)

Applications also vary in their communications needs
• Required memory bandwidth and granularity

Some work well out of cache, some don’t
• Required network bandwidth and granularity

Some ok with message passing, some need shared memory

No one processor/system design is best for all apps

FEC 2007 Copyright 2007, Cray Inc. 8

Increasingly Complex Application Requirements
Earth Sciences Example

NASA Report: Earth Sciences Vision 2030
Ice Sheet

Increased complexity and number of components lends itself well
to a variety of processing technologies

Evolution of
Computational Climate
Simulation Complexity

International Intergovernmental Panel on Climate Change,
2004, as updated by Washington, NCAR, 2005

Similar trends in astrophysics, nuclear engineering, CAE, etc.
Higher resolution, multi-scale, multi-science

FEC 2007 Copyright 2007, Cray Inc. 9Slide 9

Cascade Approach to Higher Productivity
Design an adaptive, configurable machine

Serial (single thread, latency-driven) performance
SIMD data level parallelism (vectorizable)
Fine grained MIMD parallelism (threadable)
Regular and sparse bandwidth of varying intensities

⇒ Increases performance
⇒ Significantly eases programming
⇒ Makes the machine much more broadly applicable

Ease the development of parallel codes
Legacy programming models: MPI, OpenMP
Improved variants: SHMEM, UPC and CoArray Fortran (CAF)
New alternative: Global View (GMA, Chapel)

Provide programming tools to ease debugging and tuning at scale
Automatic performance analysis; comparative debugging

FEC 2007 Copyright 2007, Cray Inc. 10

Cascade System Architecture

Globally Addressable Memory

MVP
Compute

Nodes

MVP
Compute

Nodes

MVP
Compute

Nodes

MVP
Compute

Nodes

FPGA
Compute

Nodes

FPGA
Compute

Nodes

Opteron
Compute

Nodes

Opteron
Compute

Nodes

Opteron
Compute

Nodes

Opteron
Compute

Nodes

Opteron
SIO

Nodes

Scalable, Flexible, High-Bandwidth Interconnect

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Opteron
SIO

Nodes

Globally addressable memory with unified addressing architecture
Configurable network, memory, processing and I/O
Heterogeneous processing across node types, and within MVP nodes
Can adapt at configuration time, compile time, run time

FEC 2007 Copyright 2007, Cray Inc. 11CUG 2007 Slide 11

Example Application:
Weather Research & Forecasting (WRF) Model

Mesoscale numerical weather prediction system
• Regional forecast model (meters to thousands of kilometers)

Operational forecasting, environmental modeling, & atmospheric research
• Key application for Cray (both vector & scalar MPP systems)

Accelerating WRF performance:
• Part of the code is serial:

Runs on Opteron for best-of-class serial
performance

• Most of the code vectorizes really well
Dynamics and radiation physics
Runs on Granite accelerator in vector mode

• Cloud physics doesn’t vectorize
Little FP, lots of branching and conditionals
Degrades performance on vector systems
Vertical columns above grid points are all independent
Runs on Granite accelerator in multithreaded mode

FEC 2007 Copyright 2007, Cray Inc. 12

Key Challenges to Get to the Exascale (1)
Okay, all we need is a system with 5-10 TF/chip and 100-200K chips…

Power
• If 2014 FPU is ~10-20 pJ/flop, then 1 EF = 10-20MW for flops alone!
• Memory bandwidth:

Eref/sec * 10% miss * 100 bits * 3pJ/bit = 30 MW for memory bandwidth
• These are aggressive numbers and leave much of the power out
• Houston, we have a problem!

Processor microarchitecture to exploit locality
• Resolving the tension between programmability and efficiency
• Need a new microarchitecture and execution model

Much lower control overhead relative to computation
Much more aggressive exploitation of locality (explicit control of data movement)

• Co-design hardware with compiler/runtime software
• Do not burden the programmer with this!

Need to be able to write in a portable HLL and compile to the
microarchitecture
Best if the compiler took care of the parallelism at the node level (so user
sees fewer, more capable nodes)

FEC 2007 Copyright 2007, Cray Inc. 13

Key Challenges to Get to the Exascale (2)
System and application resiliency

• Memory alone will require O(100M) chips
Assume N^3/4 scaling starting from 1B/flop at the Tflop ⇒ need 32 PB
If 16 Gbit chips, w/ ECC, need 18M chips (biggest sys. today < 2M)

• Forget trying to make hardware MTBF acceptable (deal with failures)
• System must be resilient to almost any single point of failure (and more)

Can be done with good system software design and appropriate
hardware hooks

• Completing applications much harder than keeping system up
Could bite the bullet (and watt!) for redundant logic everywhere
Checkpoint/restart likely doesn’t scale due to I/O bandwidth

• but consider adding SSD layer
Frameworks for resilient apps (think NWChem and beyond)
May be able to be automated (STM/runtime/compiler)

Local memory bandwidth technologies
• Processors + DIMMs has to go (too big of a bottleneck!)
• 3D chip stacking, direct optical memory connections
• Nano-structure memory; phase-change memory; ….

help me here, technologists!
(I like that Tbit/cm^2 crosspoint memory Stan!)

FEC 2007 Copyright 2007, Cray Inc. 14

A Suggestion for Packaging Granularity
Put as much memory as you can attached directly to the processor

• Call this a node
• It’s fairly small

Build as good a network as you can between nodes
• Optimize the network around packaging constraints (lots more bandwidth on

the board than off it)
• Provide support for board-level domain of “flat” shared memory
• Distributed memory model beyond the board

Layer on a good system architecture
• Globally addressable memory
• Scalable address translation and synchronization
• Latency tolerant processor architecture

FEC 2007 Copyright 2007, Cray Inc. 15

3D Node: Processor + Orthogonal Memory Chips

Processor Chip

Memory Chips

Capacity
• 8-32 memory chips @ 1 GB each = 8-32 GB per node

Bandwidth
• 5 μm pitch wires (10 μm per diff signal), 15mm edge ⇒ 1500 signals per memory chip
• Need to keep signaling rates to < 10 Gbps with memory periphery transistors
• Assume 512 bits/dir @ 8.25 Gbps, packetized protocol, 80% read efficiency

⇒ 320 GB/s read bandwidth per memory chip (1.28W at 0.5 pJ/bit)
⇒

2.5-10 TB/s read bandwidth per node with 8-32 memory chips
• Could nicely feed a 5-10 TF node
• Probably still too much power in memory chips to support this…

Quilt Packaging?

Space for off-node signals?

FEC 2007 Copyright 2007, Cray Inc. 16

Example Board Architecture

Can treat as 16 nodes for highest aggregate memory bandwidth
Could combine into 2, 4, 8 or 16-node “super-nodes”

• Flat addressing, latency and bandwidth
• Hashed to avoid bank conflicts
• Would still want compiler to exploit locality within a single node

Either via explicit local segments or via caching (possibly in main memory)

Inter-node signaling shown using conservative technology extrapolations
• Could also consider high-bandwidth on-board technologies (quilting, capacitive

coupling, optics?, etc.) to boost super-node bandwidth even further

0 1 15

R R R

Supernode bandwidth:
(16 nodes)*(64 sigs/node)*(25 Gbps) = 6.4 TB/s

Off-board bandwidth:
32 12x transceivers @ 16 Gbps = 768 GB/s

Shown as fat-tree. Could consider
flattened butterfly or other topology
for on-board or off-board links.

Aggregate node bandwidth:
(16 nodes)*(4 TB/s/node) = 80 TB/s

FEC 2007 Copyright 2007, Cray Inc. 17

Key Challenges to Get to the Exascale (3)
Programming difficulty

• MPI is a low-productivity programming model
What’s more, it’s not really portable, in that it is a wholly unsuitable programming
model for machines with global memory, advanced latency hiding mechanisms,
and low overhead synchronization

• Debuggers don’t scale
• Performance tools don’t scale

• Time is right for a high productivity language

FEC 2007 Copyright 2007, Cray Inc. 18

Chapel
A new parallel language developed by Cray for HPCS

Themes
Raise level of abstraction, generality compared to SPMD approaches
Support prototyping of parallel codes + evolution to production-grade
Narrow gap between parallel and mainstream languages

Chapel’s Productivity Goals

Vastly improve programmability over current languages/models
Support performance that matches or beats MPI
Improve portability over current languages/models (actually better than MPI)
Improve code robustness via better abstractions and semantics

Status

Draft language specification available
Portable prototype implementation underway
Performing application kernel studies to
exercise Chapel
Working with HPCS mission partners & parallel community to evaluate Chapel
Initial evaluation releases made available December 2006, June 2007

Slide 18

…
coforall block in UpdateSpace.subBlocks do

for r in RAStream(block) do
T(r & indexMask) ^= r;

FEC 2007 Copyright 2007, Cray Inc. 19Slide 19

Chapel Code Size Comparison
For HPC Challenge Benchmarks

STREAM Triad Random Access FFT

FEC 2007 Copyright 2007, Cray Inc. 20

One Last Exascale Challenge (4)
Need to build systems for tomorrow’s applications
• Irregular, dynamic, sparse, heterogeneous….
• Codes that don’t exhibit locality, or that have limited per-thread

concurrency
• Need to start, stop, move and synchronize computation efficiently
• Let’s not solve the scaling problem for the easy apps and declare

success

• “Leave no application behind”

FEC 2007 Copyright 2007, Cray Inc. 21

Key Challenges to Get to the Zettascale
I accept that CMOS won’t get there due to power and other reasons.
New computing technologies will likely require new architectures, new
execution models and new programming models

• Exploitation of locality will be key
• Very likely to involve massive threading and lightweight thread migration

Architects need to understand the technological sandbox within the next
dozen years or so…
Absolutely must have better programming models where humans don’t
have to coordinate all the data distribution and communication

• Would be nice if those were the same programming models used at Exascale
Need to have much more sophisticated and automated tools for
performance and correctness analysis

• Presumably involving pervasive introspection

I am an optimist. I think we will get to zettaflop computing using some
interesting post-CMOS technology by ~2030. It will look different than
any of us imagine today. Good occasion to retire.

FEC 2007 Copyright 2007, Cray Inc. 22

Thank you.

Questions?
sscott@cray.com

	Future Supercomputer Architectures
	Where Are We Today?
	March to a Lottaflop
	Major Processor Inflection Point
	Concerns With Multicore
	So, Can We Just Pack Chips with Flops?
	Opportunities to Exploit Heterogeneity
	Increasingly Complex Application Requirements�Earth Sciences Example
	Cascade Approach to Higher Productivity
	Cascade System Architecture
	Example Application:�Weather Research & Forecasting (WRF) Model
	Key Challenges to Get to the Exascale (1)
	Key Challenges to Get to the Exascale (2)
	A Suggestion for Packaging Granularity
	3D Node: Processor + Orthogonal Memory Chips
	Example Board Architecture
	Key Challenges to Get to the Exascale (3)
	Chapel�A new parallel language developed by Cray for HPCS
	Chapel Code Size Comparison �For HPC Challenge Benchmarks
	One Last Exascale Challenge (4)
	Key Challenges to Get to the Zettascale
	Thank you.

