Ultraperformance Nanophotonic Intrachip Communications: UNÍC

Jagdeep Shah DARPA/MTO

Frontiers of Extreme Computing 2007 Santa Cruz, CA October 21-24, 2007

Approved for Public Release, Distribution Unlimited

Introduction: Vision and Challenges
Microprocessor Challenges
Photonics/EPIC

UNÍC
Summary

CHALLENGE AND VISION

DEVICE SCALING MICROPROCESSOR SCALING

Intel 4004 (1971) 2312 transistors, 11 mm² ~20,000 transistors/cm²

Intel Itanium 2 (2006) 1.72 billion transistors, 596 mm² ~300,000,000 transistors/cm²

15,000 X Increase in Device Density

The Impact of Moore's Law:

- Device scaling most obvious in microprocessors
- On the path to >> 1 billion devices/ cm²
- 3D layer stacking on all foundry roadmaps

Microprocessors are becoming

Ultradense Systems

DARPA/MTO VISA Program

Other Ultradense systems

Courtesy HP

DARPA MoleApps – Aim: 10¹⁵ devices/ cm³

17 nm half-pitch,
3.5*10¹¹/cm²
demonstrated

CHALLENGE

- How will these ultradense functional units communicate
 - With each other?
 - With the external world?

• DARPA is about to launch a program to develop such a pathway:

- for communications between ultrahigh functional units on a chip and from the chip to the outside world
- Enormous challenges: Focus on a specific challenge of microprocessors

•Use microprocessor circa 2017 as a design driver

MICROPROCESSOR CHALLENGES

Diminishing Performance Returns

System-level balance

- Memory/ Bisection-Bandwidth balanced against peak performance Metric: Bytes/FLOP ([B/s]/[FLOPS]) ~1
- On-chip/ off-chip bandwidth balanced

Power Consumption

Uniform Distribution: 1/3 Processing, 1/3 Communications, 1/3 Memory <u>We're already seeing this effect:</u> Microprocessor performance is not keeping pace with device scaling due to limitations at the circuit level

- Diminishing returns of ILP
- Thermal constraints
- Increasing complexity
- Growing communications gap

Supercomputer Comms Gap

- Memory and bisection bandwidth imbalance a growing problem
- Limited by power consumption

Example: Cray XT4, 380 TF Bytes/Flop ~0.06

Communications challenges prevent <u>actual</u> system performance from meeting <u>theoretical peak</u> performance

Multicore Processors Today and Tomorrow

Multicore architectures designed to deliver increased performance at the circuit level

1 TFLOPS on-chip reported

Challenges

- Reducing system-level power consumption
- High-bandwidth, low-power access to ultradense devices
- The communications gap:
 - Latency/Bandwidth limits
 - Power dissipation as wires shrink
 - Power-hungry off-chip communications to memory

<u>"Supercomputers on-Chip"</u> Multicore Processor Plane

> 3D Integration

> > **Global Information**

Tb/S

Grid: 5 7

- Processor/On-chip Memory

 100-1000 compute cores in ~6 cm²
 ~10 TFLOPS peak performance
 - -3D-integration
 - ->100 billion active devices!
- Required Communications Network
 ~80 Tb/s on-chip bandwidth
 - -~80 Tb/s off-chip memory BW
- Total System Power ~200 W

Electronics <u>cannot</u> meet communication requirements <u>within power budget</u>. Actual performance cannot meet theoretical peak performance. <u>A new communications strategy is required</u>

PHOTONICS

The Annual Workshop: Interconnections within High-Speed Digital Systems, Santa Fe, NM Approved for Public Release, Distribution Unlimited

Slide 11

Optical Communications

Is photonic signaling a potential solution to the chipscale communications problem?

PHOTONICS

BENEFITS

- High Bandwidth/Capacity
 - Wavelength Division Multiplexing (WDM)
 - Time Division Multiplexing (TDM)
 - Space Division Multiplexing (SDM)
- No need for power hungry repeaters
- Power Independent Of Distance (~ 10 cm)
- Seamless I/O

CHALLENGES

- Compatibility with Silicon
- Current devices too large: can they be scaled down in size?
- Current devices are power hungry: can the power be reduced?
- Spectral bandwidth vs. thermal stability

Devices required to meet these challenges will be very different from today's devices performing the same functions

EPIC ELECTRONIC PHOTONIC INTEGRATED CIRCUITS

Success of EPIC gives confidence that this is possible

- Legacy microphotonic devices were discrete components using a variety of materials
- Moore's law has opened the way for integrated photonics in Si
- High index-contrast of Si/SiO₂ and smooth features below 90nm node enable nanophotonic devices
- DARPA EPIC Program has demonstrated high performance, monolithically integrated photonic and electronic devices <u>using</u> <u>a standard CMOS foundry</u>
- Application-specific EPIC chips demonstrated

Frontiers of Extreme Computing 2007: Santa Cruz, CA

UNÍC

PHOTONICALLY-ENABLED MICROPROCESSOR

Frontiers of Extreme Computing 2007: Santa Cruz, CA Approved for Public Release, Distribution Unlimited

Slide 16

- Select a Design Driver (with ultradense functional units: microprocessor circa 2017)
- Design a photonic communication network within the constraints imposed by the design driver
- Quantify the system benefits of the approach
- Quantify device requirements to enable such communications
- Demonstrate the required device performance
- Demonstrate <u>on-chip functional communication links</u> <u>with all essential components working in unison</u> (sufficiently aggressive to convince the skeptics)
- Demonstrate multiple high performance microprocessors communicating via on-chip optical links

UNÍC: OBJECTIVE

Demonstrate to the microprocessor community (and others) that photonic intra-chip – and seamless off-chip – communication is a <u>credible technology</u> that will allow actual system performance to scale to a level not possible with electronic communications

Comprehensive, team-based efforts encompassing

- 1.Photonic Communication Architecture (on/off chip)
- 2. Device demonstrations (compatible with CMOS fabs) far beyond EPIC
- 3.System-level performance-benefit analysis
- 4.Full-link demonstrations of all critical technologies working together; application emulation
- 5.Microprocessors communicating via on-chip optical linkes

No effort on processor design, architecture...

Optical Link Key Components

Optical Link Example

How can 80 Tb/s be achieved?

•Transmit – Spatial Division Multiplexing (SDM) and Wave Division Multiplexing (WDM) of optical signals with multiple, low-insertion-loss, high-BW modulators

• Route – Spectrally filtered passive networks or active, arbitrated spatial switch networks using low loss, high power handling waveguides. Power consumption due to tuning must be kept at a minimum by using thermally tolerant designs.

• Receive – High-BW, high-responsivity, low-power (no TIA) photo detectors

System-level constraints mandate stringent performance requirements

Device Example		EPIC	UNÍC	Required
(w/drivers)		Demonstrated	Requirements	Improvement
10+ Gb/s Modulator	Area	700 μm²	28 μm²	25 X
	Power	330 mW	0.8 mW	825 X
WDM Filter	Area	0.6 mm ²	0.005 mm ²	120 X
	Power	73 mW (tuning)	0 mW ?	???
10+ Gb/s Detector	Area	0.16 mm ²	0.01 mm ²	16X
	Power	36 mW	1 mW	36 X

UNÍC will consist of many EPIC-like circuits with dramatically reduced power consumption and dimensions

Next Generation Intra-chip Communication Devices Require Dramatic Size and Power Reductions

PHOTONIC TECHNOLOGY BENEFITS

- High Bandwidth: Wavelength, Time, and Space Division Multiplexing
- Low Power: No repeaters, buffers, regenerators; independent of dist.
- Seamless I/O: No need for power-hungry off-chip communication
- Enables high performance for low system power
- **System-level benefits**
 - Restores B/F system balance to maximize actual performance
 - Facilitates architectures which reduce programming complexity (e.g. shared memory)
 - Reduces chip and system power
 - Enables deployable, chip-scale supercomputers

Real-Time, High-Performance Embedded Processing

SAR Processing Autonomous Ops Frontiers of Extreme Computing 2007: Santa Cruz, CA Approved for Public Release, Distribution Unlimited

Supercomputers

Slide 21

- Device scaling is producing ultradense electrical microsystems
- Microprocessors are becoming ultradense supercomputers on-chip
- High-performance computer systems are becoming unbalanced due to communications bottleneck
- Photonic communications may provide a novel solution to high BW on- and off-chip communications challenges
- UNIC addresses this problem head-on

