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Top Architectural Challenges
• Power

– Do we know how to design with other 
device technologies, eg reversible logic

• Ease of programming vs efficiency
– Have to exploit locality without 

burdening programmer (>EF)
– May have to introduce new 

programming/execution models (>EF)
• Reliability/Resilience

– MTBF too short at EF scale for number 
of components used

– Failure should be expected
– Graceful degradation
– Application continues to make progress 

in presence of failure
• How to help problems that don’t have 

locality
– E.g., graph problems, AI
– Leave no code behind

• Getting the arithmetic right
– Dealing with variable numerical 

precision needs

• Concurrency
• Size / Bulk
• Design / Build

– First Principles Analysis and 
Design

– Design time and manufacturing 
time

– Selected / well chosen design points
• Supporting a global address space 

with greater than 2^64 bits
• Information security
• Cost

– Commercial product alignment?
– Use of consumer components?

• Number of interconnects & 
technology

• Packaging
– cross cuts power, locality, size/bulk



Way Forward

• What do we need to do to realize this future
• What are the most promising courses of 

action
• How can we connect this future to our 

present



ExaFlops Target 
(c.f. S. Scott)

• 5-10 TF/chip and 100-200K chips

• Power
– Assume 2014 FPU is ~10-20 pJ/flop, then 1 EF = 10-20MW
– Memory bandwidth:

• Eref/sec * 10% miss * 100 bits * 3pJ/bit = 30 MW for memory 
bandwidth

• Processor microarchitecture to exploit locality
– Resolving the tension between programmability and efficiency
– Need a new microarchitecture and execution model

• Much lower control overhead relative to computation
• Much more aggressive exploitation of locality (explicit control of data 

movement)
– Co-design hardware with compiler/runtime software
– Do not burden the programmer with this! 

• Need to be able to write in a portable HLL and compile to the 
microarchitecture



Potential Packaging Technologies
•

 

3D Stacking 
−

 

extends CMOS and other technologies (Hafnium ??)
•

 

Processors
•

 

Memory (resilient, potential lower power)
•

 

Wafer-Scale opportunities
•

 

Feature size agnostic 
−

 

Not just stacking (Full Crystal Growth, future)
−

 

Various intra-connects
•

 

Cu, Optical, C-Nano…
−

 

Hybrid
•

 

Mixed technologies on stack
−

 

CAM , FPGA, Optics (GAS, CMOS,…)
−

 

Potential for 
•

 

FPGA
•

 

CAM
•

 

Flash
•

 

Quantum

•

 

Better Memory Technologies
−

 

More efficient
•

 

MUCH Closer, MUCH Faster (3D paths)
• PIM or MIP or SPD’s, SOC

−

 

Processors + Memory + Interconnect + Accelerator



Potential Packaging Technologies
•

 

3D Stacking 
−

 

Stacked Optics

•

 

LANL funded studies
−

 

Stacked CAM
−

 

Stacked FPGA
−

 

Stacked 40Gb/s packet analyzer
−

 

8051 3D with IEEE + Crypto Functions
−

 

Stacked Cell processors
•

 

128-256GB, 1TF processor
•

 

GAS layer (external optics)
•

 

4-8TB/s on-stack memory BW

•

 

Current potential vendors
−

 

Tezzaron
−

 

IBM
−

 

TSMC
−

 

Micron
−

 

Talked to several Graphics Vendors

•

 

Potential enormous Application Impact
−

 

Minimizes latencies
−

 

Maximizes BW
−

 

Scatter / Gather easy to implement



Nominal Exascale Packaging Stats 2018 (probably sooner) 
Another View Based on Very Small Low Power Cores
3D MCM Module based on 

•

 

~ 2000 cores (very low power), 2GF per core

•

 

15 layers

•

 

22 nm

•

 

16 TB / 4 TF per MCM stack

•

 

P = 1-2 kW per MCM stack

•

 

N = 250,000 modules (500M cores)

•

 

P (system) = 250MW – 500MW (no power mgmt)

•

 

P (system) = 25MW – 50MW (with rev logic, power mgmt)

•

 

8 MCM/blade

•

 

35,000 blades

•

 

1000 racks (30 x 30)



Complete system simulation project
•

 

Government funded multi-diciplinary
−

 

Labs , Universities ,  Agencies , Commercial Partners
−

 

Multi year funding
•

 

GPL, available to all.
•

 

Allow for full system simulation
•

 

Publish the API.
−

 

Allow for proprietary plug-ins
•

 

Open Source / Open Development is non-negotiable
•

 

Parallel design from conception
−

 

Must be able to be run on single node systems
−

 

Must be able to run on local as well “net” clusters (SETI)
•

 

Design and produce POPs manual first
•

 

Commercial agnostic (even if they pay)
•

 

Element agnostic
−

 

Network technologies
−

 

Process technologies
−

 

Disk / Storage technologies…



Complete system simulation project
•

 

Full system component simulation
−

 

Function Accurate
−

 

Cycle accurate
−

 

Processor(s)
•

 

Vectors
•

 

Cache / no cache
•

 

Acceleration technoligies…
−

 

Intra-chip interconnect
•

 

Cu , Optical, C-nano…
−

 

Inter-chip interconnect
•

 

Cu, Optical, … ?
−

 

Memory hierarchies
−

 

Packaging agnostic
•

 

2D, 2.5D,3D, ??
−

 

Process design rules agnostic
•

 

Should be able to work with all as well as potentially some not yet
−

 

Power aware modeling
−

 

Graph as well as graphical input



Complete system simulation project
•

 

Full system component simulation
−

 

Must be able to replace SW with HW modules
•

 

FPGA
•

 

ASIC
•

 

Disk subsystem
•

 

Full systems
−

 

Ala RAMP 
−

 

Ms. Clops (examples)
−

 

Replace SW model with physical prototype(s)
−

 

Must also model
•

 

Disk , I/O subsystem(s)
•

 

Flash, MRAM,…

•

 

Numerous potential starting points
−

 

ASIM
−

 

NetSim
−

 

SST
−

 

BigSim
−

 

DiskSim (CMU)



Gui Interface (Example from OpenDX)

Links can be to either physical devices or logical devices
Modules can be virtual or physical
Define a standard API



Architecture Opportunities - Power
• Reducing Power problem

– Reduce clock rate
– Async logic
– Operate on more data next to ALUs
– Reversible logic
– Variable precision (effects bw, storage, …)
– Less speculation, less control (reduces overhead)
– ….



Estimated Power Requirements



Resilience/Fault Tolerance
• Critical to offset aggregate error rates
• Implementation model

– Hardware detection—minimal redundancy, minimal overhead
• Need full Error Detection and Correction (EDAC) in microarchitecture to 

avoid full replication
• EDAC on all communications
• No single point of interrupt left uncovered
• All failures detected and reported to system software

– Checkpoint/rollback (or roll forward—avoid cascading rollback)
• Non-volatile RAM for storage
• May be staged to long-term storage for app scheduling
• Could be implemented as shadowed RAM or virtual memory

– Thread migration a feature of execution model
– OS/runtime support for layered recovery

• Research needed
– Algorithm-based fault tolerance (ABFT) for processor state machines, 

etc.
• Compute invariants before/after and compare
• Hardware design and experimentation

– Fault coverage analysis integrated into hardware design tools
– System-scale fault modeling tools
– Programmable redundancy
– Runtime Error Detection



Execution Model
• Based on SVP/Micro-threads research

– Model vetted as part of EU AETHER effort
– Some tools available now

• Uses Active-Object logical model
• Supports evolution across/from CMOS without 

programming changes
• Uses compilation support instead of hardware 

support to optimize locality
• Permits (but does not require) much simpler 

multi-core chip design.
• Support dynamic Aobject creation/migration



Execution Model – Active Objects

• Implemented in microthreads
• Creates Design/Programming Locality per 

instance that equates to data/operation locality 
per thread

• Architecture paradigm familiar to mpi 
programmers

• OO design concepts well understood
• Supports Aspects to handle hardware/system 

exceptions
• Application data expressed as active objects



On the Far Side

• Hybrid wet/dry strategies
• Biologically inspired digital systems design

– MCM building blocks
– Statically and dynamically reconfigurable
– Possible stochastic methods for data integrity 

management
– agents (for fault detection and recovery, 

programming redundancy, load balancing, 



Recommendations
• Exascale (within decade)

– Thread migration, locality exploitation, and micro 
architectures to support these features

– Innovative resiliency methods required
– Full system simulation an explore design space
– Aggressive technology development:

• 3D packaging
• Optical interconnects at all levels (intrachip thru system)
• Large amounts of non-volatile RAM close to the processor

• Zettascale (within 2 decades)
– New device technology needed to reach last 10-100X
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