System Software Working Group

Frontiers of Extreme Computing

Ron Brightwell (c), Jeffrey Vetter (vc), Almadena
Chtchelkanova, Guang Gao, Patrick Geoffrey, Mary
Hall, Fred Johnson, Jim Kasdorf, Ron Minnich, Jose

Munoz, David Probst, Neil Pundit, Steve Scott,
Thomas Sterling, Kathy Yelick

Issues

_ 3 Strategic Issues — System Software
=i and Programming Environments WG

Advanced execution models

Parallel programming models, methods, and tools
Resource management, allocation, and scheduling
Mass storage and I/O management

ﬁ

LSU

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

Questions

_§ Questions — System Software and 43
=i = Programming Environments WG g‘b

+ What new semantic constructs and execution models will be needed by
Exascale applications and algorithms? What will the programming
languages of the future look like?

« How will programmers contend with billion-way parallelism? What will
the new languages look like?

« What operating system organizing strategy will effectively manage 100
million or more processing cores efficiently and reliably?

« How will compilers and runtime systems support the new classes of
applications dominated by dynamic meta data structures?

« What will be the balance in the future between user direct control of
resources and system automation for ease of use?

« WiIll programmers continue to program with arithmetic statements, or
may a different paradigm become prevalent? Examples, neural
networks, fuzzy logic, graph algorithms, image processing, real time?

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

Multiple Perspectives

Strategic Issues

Advanced execution models

Parallel programming models,
methods, tools

Resource management,
allocation, scheduling

Mass storage and 10

Software Hierarchy

Operating system
Runtime
Programming models,
Languages, Compilers
10, Storage, Mass storage
Programming Tools

* Correctness

® Performance

+ Cross-cutting Issues
— Power
— Parallelism
— Performance
— Execution Model
— Efficiency
— Cost
— Reliability
— Productivity

+ Application
+ Architecture

Assumptions

+ Applications * Architecture
— Use new — Billions of threads
programming models — Globally address space

to exploit new

" ¢ — Multiple levels of
arc 1tectura. ea.tures memory with different
— Legacy applications characteristics
must work — Dramatic

* Operate at performance
the application
designed for

improvements in
system balance

Discussion Summary

Challenges
Current OS Trends

Traditional resource allocation

mechanisms are at least 30 years
old

Lack of co-design
— Need testbeds, simulators
Support for fault-oblivious
applications
Radically new architectures
— New ISAs, memory models

Sule)ort for billion-way
parallelism

Little/no interaction among OS,
compiler, runtime

Programming models have not
changed

Software business models

Opportunities

Large scale concurrency is here
(100k) and growing

Heterogeneous computing is
quickly approaching

Move beyond legacy application
support

Device technologies may inject
dramatic improvements in
architecture balance

Major changes in architectures
are forcing reexamination of
trends

New programming models that
expose architecture’s
performance features

Leverage community efforts to
improve parallel programming
for masses

Recommendations (1)

+ New resource management strategies for processor,
memory, bandwidth
— Current methods are insufficient
— Scheduling
— Flops are free; bandwidth is precious
— ‘New’ system balances

+ New abstractions for managing heterogeneous systems
(e.g., multiple types of processors, memory, memory
models)

— Need access to new simulators, architectures

+ Hardware and system software co-design
— Use VMs to test OS at scale before system arrives
— Need access to new simulators, architectures during design

— Expose hardware features that allow improved performance,
reliability
e E.g., Transactional memory

— need features in hardware for operation and performance
analysis

Recommendations (2)

Expeditions into new software systems for
architectures that are 10”4 larger than current systems

OS
Programming systems
‘Programs writing programs’

Consider system software to be an application (‘eat our own
dogfood”)

We can start this today — no need to wait!

Reliability abstractions and methods

Fault-oblivious applications, programming models, ...
Checkpointing your exascale application will be impractical

IO, storage

Implicit IO — need new methods for managing the n-level
storage hierarchy

Self-evident

More funding, testbeds, programs

Education

Bonus Slides

Operating Systems

+ Efficiency, Performance

+ Reliability,

+ System software resource overheads in
terms of memory, time, power, heat,

dollars overwhelms applications
software

— can’t afford resources to make it possible

Programming Models / Languages

* Synergy between 0s, runtime, and
compile time

+ Appropriate abstractions for levels of
software stacks

Runtime

12

|0, Storage, Mass Storage

Execution models

+ Abstract framework encompassing
architecture, programming model,
runtime/os, a set of governing principles
interrelating them

Cross-Cutting Issues

*

*

L 2

*

*

*

Power
Parallelism
Performance
Execution Model
Efficiency

Cost

Reliability

Power

Needs to be managed as a precious resource
(anything that consumes power)

System software (OS, compiler, ...) needs to
expose and manage power resources to
applications

— Cache management, bandwidth management, etc.

How to model power

Get processor developers to provide simple
mechanisms

Minimizing data movement helps

16

Parallelism

+ Billion-way parallelism is a (the?)
significant challenge

+ How to express parallelism (TLP, PGAS,
Data Parallel, etc.)

* OS should support arbitrary resource
management policies

+ System software for large-scale
heterogeneous processing systems

+ Ease of programming

Performance

* Reduce overhead so it is no longer a
lower bound on granularity

* Don’t slow the apps down

+ Abstraction for exposing architectural
performance features

* Reduce operating system call overhead to
the level of a procedure call

* Current approach for performance tools
will not scale

Execution Models

Must exploit synergy between OS, run-time and
compile-time
Linking the memory model with the execution model

Lack of I/O (streaming, secondary storage) support
inherent in the execution model

How to get the “right” protocol interaction between the
compiler, run-time, and OS

Appropriate abstractions
— For the machine and for the app developer

Support for numerous, various architectures and
applications

19

Efficiency

Need new approaches to resource allocation and
scheduling that do not degrade efficiency and
predictability
Shared address space machine memory model

— Cache-coherency (has not) and will not scale

— An API for exposing such parallelism

— Pre-fetchers will not scale

Continuous load balancing (adaptivity)
Devise a programming language for a trans-exaflops
machine

— Language support for avoiding evil data races

— Balance responsibilities between user and system
— Marxist distribution of responsibilities (who's good at what)

20

Productivity

Support for legacy applications — new machines have
to produce useful results early

Support for application portability
Dealing with application developers’ inertia

Leveraging smart applications’ people
— Can’t please all of the people all of the time
— Need to work with app developers to “do the right thing”

Provide a sane environment for application
development

Need new program development environments
— Debuggers for billions of threads

21

Cost

+ Lack of appropriate OS testbed resources

* Where does the money come from for
system software development

— Software may no longer be free

* Cost from uniqueness of systems?

— Radically different system software from
machine to machine

Reliability

+ System software and tools need to
provide an environment for the
development of more robust, failure-
tolerant applications

* Managing resources in the presence of
failures at scale — dynamic
reconfiguration

+ Fault oblivious programming model

* Tools to insure system software
correctness

+ Invariant violation application
debuggers

Design and Implementation

Current trends in OS development are not addressing
fundamental issues required for trans-exaflops computing

Current OS’s are not structured to enable trans-exaflops
computing

Expectations of “develop on the desktop and run efficiently on
the exaflop” need to be managed

System software people are not getting it right either (automake,
configure are part of the problem)

The customer may not always be right

System software verification on large-scale systems
— Need real applications, real problems, and lots of time

Leveraging disruptive technology smoothly

Non-fixed OS (composabililty)

What should be virtualized?

24

Challenges

OS trends are not helping

Expectation of Linux desktop environment
everywhere

Just say “no”
— To non-scalable and/or non-predictable things

Our apps are not Google apps

— More strict requirements

— But could they be more robust to failure(s)?
There’s a right way — just do it

— Conflicts with the business model

25

Challenges

* Runtime tightly coupled with compiler?

— Opportunity to explore more dynamic
behavior

— Execution model has to allow asynchronous
threads

— Predictable performance

Challenges

Sheer scale - number of things to manage
— Billion-way parallelism
— Reduce overhead so it is no longer a lower bound on granularity

Current OS’s are not structured to enable trans exaflops
Synergy between OS, run-time and compile-time

How to express Farallelism (TLP, PGAS, Data Parallel, etc.) and the corresponding
execution mode

Linking the memory model with the execution model
Managing resources in the presence of failures at scale
Multiple definitions of an “execution model”

Shared address space machine memory model
— Cache-coherency (has not) and will not scale
— An API for exposing such parallelism
— Pre-fetchers will not scale

Strict scaling from teraflops to trans exaflops
Support for legacy applications

New approaches to resource allocation and scheduling that do not degrade
efficiency and predictability

27

Challenges

Support for application portability
Dealing with application developers’ inertia

Lack of I/O (streaming, secondary storage) support inherent in the
execution model

Leveraging smart applications’ people
— Can’t please all of the people all of the time
— Need to work with app developers to “do the right thing”

Lack of appropriate OS testbed resources
OS should support arbitrary resource management policies
Getting the OS out of the way
Provide a sane environment for application development
Fault oblivious programming model
Need new program development environments
— Debuggers for billions of threads
System software verification on large-scale systems
— Need real applications, real problems, and lots of time

28

Challenges

How to get the “right” protocol interaction between the compiler,
run-time, and OS

Appropriate abstractions
— For the machine and for the app developer

Leveraging disruptive technology smoothly

Continuous load balancing (adaptivity)

Support for numerous, various architectures and applications
Non-fixed OS (composabililty)

System software for large-scale heterogeneous processing systems

Devise a programming language for a trans-exaflops machine
— Language support for avoiding evil data races
— Balance responsibilities between user and system
— Marxist distribution of responsibilities (who’s good at what)

29

Opportunities

Decent programming models
— Expressiveness, generality, performance, productivity

Influence architectures — co-design
— E.g., FEB on network messages

Initiate OS expeditions to explore these new design
spaces

Neil - look at the largest systems we have and
highlight successes

Moving beyond legacy applications

Give applications developers tools to manage
parallelism and locality easily

Develop massive parallel asynchronous fine grained
execution model
— Tntis not asynchronous

Reassigning responsibility throughout the software
stack

30

Opportunities

Funding for system software NRE
Resilient computing — computation that continues to completion in spite of failures - fault
oblivious computing
User challenge = parallelism is not easy
Leverage hardware developments in multicore and many-core
— HPC’s problems are now the world’s problems ©
Photonics should ease traditional burdens on software
Help apps developers manage locality
- Tools for doing so
Allow experts to manage software system explicitly and inject domain knowledge into the
system
): Conservative defaults, heroic overrides
Feedback-driven or adaptive compilers
— Redefine role of compiler
— Heterogeneous systems
- Autotuning
— Interactive optimization
Beefeaters is Thomas’ favorite drink
Opportunity to establish a new relationship between runtime and OS; where the compiler is a
conduit from the programming model to the runtime
- Hardware <-> Runtime Systems <->
— Dynamic system for managing parallelism
Metrics for evaluating system software capabilities
Revisiting system software design choices in light of light

31

Viable Paths Forward

* Education
— Careers in HPC
— Labs need to emphasize intellectual freedom
— Adequate investments
— Beowulf boot camp

+ Market size — consequences of open
source

32

Viable Paths Forward

* TS Operating System
— Lightweight kernels
— Emerging behavior from LWKs
— Development time is relatively small
— Single machine that is self-regulating

— Lightweight synergistic types of constructs
that are symbiotic

* Small group in short amount of time

33

Viable Paths Forward

Development environments
— Virtualization for experimentation
® Scaling
Limitations from legacy application’s constraints
— Accommodate legacy applications
— Refactor for optimal performance
— Well defined migration path
System software resource overheads in terms of memory, time,
power, heat, dollars overpowers applications software
Mass storage
— software for mass storage should be this new programming model
— fault oblivious, full use of tlp
Tools for performance and correctness
— Usability at scale

34

Operating Systems

System software resource overheads in terms of memory, time,
power, heat, dollars overwhelms applications software

— can’t atford resources to make it possible
Demand paging will not occur

Support for new architectural constructs or models
— Don’t assume uniformity of system resources in a specific application

— Multiple levels of memory, different characteristics
* Need a new memory model
* One physical port
e vYNUMA
Threads / Scheduling
— Don’t want kernel level threads scheduling
— Need predictability
— Preemption in alternative devices
— Performance variability across different memory hierarchies, devices

Can’t drop a process on a raw processor w/o OS, protection
domains

35

Programming Languages / Compilers

Programs that write programs
Components

Correctness

Expressiveness

Should functional programming remerge
— Erlang, haskell,

New languages: X10, Chapel, Fortress

Languages that allow a Ylication to specify multi-
grained parallelism and locality

— Different synchronization mechanisms
Transparency v. visibility
Mainstream and elite users
Data structures, affinity, distributions

36

|0 and Storage

+ Storage is a parallel application
— Same problems: distributed data, parallelism, failures
— Same tools for 30 years
¢ C, Unix-like OS
* Performance and scaling
— N-way to one scaling
— Same load balancing problems

+ 10/storage is often under-provisioned
+ Checkpointing (1 EB)

— Checkpointing needs more work
 This isn’t your grandfather’s checkpointing

37

Runtime

Control flow migration in runtime
— Continuations
— Latency hiding opportunities

Runtime will have fluctuating resource
demands on system

Runtime will have a shorter ‘wavelength’ than
OS

No protection, lightweight
Triumph of user-level runtime

Transparent support for correctness and
performance analysis

38

	System Software Working Group�Frontiers of Extreme Computing
	Issues
	Questions
	Multiple Perspectives
	Assumptions
	Discussion Summary
	Recommendations (1)
	Recommendations (2)
	Bonus Slides
	Operating Systems
	Programming Models / Languages
	Runtime
	IO, Storage, Mass Storage
	Execution models
	Cross-Cutting Issues
	Power
	Parallelism
	Performance
	Execution Models
	Efficiency
	Productivity
	Cost
	Reliability
	Design and Implementation
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Opportunities
	Opportunities
	Viable Paths Forward
	Viable Paths Forward
	Viable Paths Forward
	Operating Systems
	Programming Languages / Compilers
	IO and Storage
	Runtime

