Invited Presentation to the 2007 Workshop on the Frontiers of Extreme Computing:

Operating Systems for Exascale Computing and Beyond

When there are too many cores to count

Dr. Thomas Sterling

Faculty, *LSU Center for Computation and Technology*
Arnaud & Edwards Professor, *LSU Department of Computer Science*
Adjunct Professor, *LSU Department of Electrical and Computer Engineering*
Faculty Associate, *California Institute of Technology*
Distinguished Visiting Scientist, *Oak Ridge National Laboratory*

October 22, 2007
Exascale Foundation Assumptions

• Extremes of parallelism
 – 100 million cores
 – Billions of threads
 – Additional fine grain parallelism
• Everything is multi-cycle latency
 – Synchronous domains & asynchronous global exchange
 – Clock rates > 20 GHz
 – Pipelined access to register set
 – top level “cache” is 10’s of cycles away
 – Local memory could be 1000 cycles access latency
 • Processor in memory will dramatically reduce this
• Complex hierarchical global name spaces
• Failure modes
 – Rapacious
 – Repeated
• I/O
 – Many to one
 – Virtualizing the persistent storage
 – Streaming interactive
Exascale OS Requirements

- The Obvious
 - User API services
 - Resource management
 - I/O abstraction
 - User interface
 - File I/O
 - External data streaming
 - Fault recovery and protection

- Keeping the lid on complexity
 - Difficulty of user control should be order constant
 - One environment to rule them all
 - But all what?

- Elastic
 - Scalability
 - With efficiency
 - Dynamically flexible
 - Take as much as you need, use as much as you take
 - Just in time provisioning
 - Heterogeneity
 - Multi-modal
 - Different policy cultures for different application requirements
 - Coexistence through computational détente
Where we don’t want to be:

- Garbage piles
 - We avoid it - *because it stinks*
 - Hypervisors on top of
 - Distributed middleware on top of
 - Node Linux’s on top of
 - Core services
 - What’s a compiler to do!?

- Dim witted
 - Lightweight shouldn’t mean: “lobotomized” kernels

- Big Brother – virtual machine
 - Don’t worry your silly little head about details
 - The “Smile, be happy” portability mindset
Core Trek (the next generation?)

In Exascale Computing: Space is the “final frontier”

To Boldly Code, where no thread has goto’d before
Federation OS Environments

- When there are too many cores to count
 - Sea of resources
 - Precludes explicit programmer management

- Two layers
 - Lower: Local functional services at hardware resources
 - Higher: global policy and API

- Multi-verse of abstract OS’s
 - Selectable
 - Customizable (on the fly)
 - Concurrent
 - Overlapping
Sym-biOS for Exascale Computing

• Complexity of operation
 – Not through complexity of design
 – But through complex dynamic interaction of myriad simple functions
 – A property of emergent behavior

• Global services achieved through synergism of local services
 – Local service functions operate within synchronous physical domains
 – Global services achieved through brokered local contributors

• Global Sym-biOS locally interfaced global service layers
 – Memory layer
 – Communication layer
 – Parallel control flow layer
Paving the Path

• Is the OS community large enough to explore non-typical solutions?
• Do we know enough from hands-on experience with really BIG systems?
• What is the interface that has to be supported to provide a non-disruptive path for existing application code base?
• What are measurable milestones that permit tracking of progress towards realization of future environment?