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� Moore’s Law is an observation about the number of devices that can 

be placed on a chip at a given time.

� There is no fundamental physical reason why device densities 

cannot follow the Moore’s Law trend for many more decades.

– Lithographic dimensions will eventually be shrunk to atomic scale and 

lithographic processes can seamlessly combine with synthesis.

– New devices can circumvent the scaling limits of FETs. 

My view…
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� Making devices smaller is not the problem!

� Silicon CMOS Technology will be extended for at least a decade

� The “ultimate” FET may not be made of silicon

� Non-silicon memory devices will scale to very small dimensions.

� New devices may enable adiabatic  computing and reversible logic.

Topics
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A Brief History of Miniaturization 

Moore’s Law (1965)
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The silicon transistor in manufacturing …

35 nm
Gate Length

90 nm technology generation 
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… and in the lab.

 TSi=7nm

 Lgate=6nm

 Source Drain

  Gate

B. Doris et al., IEDM , 2002
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Still, we are approaching some limits.
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min

IBM 

Confidential 0.4 s per frame

Total ~ 80s

Filmstrip during bootup:

Thermal images 
during bootup:

max

Active Power Can Better Managed!
Thermal Mapping of Fully Operating IBM Microprocessor 
(2 GHz, 1.4 V) in a System Environment

H. Hamann (IBM), ISSCC 2005
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Access to data cache Access to memory controller
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Better Information for Layout and High-level Design

H. Hamann (IBM), ISSCC 2005
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The Problem with Passive Power Dissipation:
You Can’t Scale Atoms!

� Direct tunneling through the gate insulator will be the dominant cause of 
static power dissipation.

� Single atom defects can cause local leakage currents 10 – 100x  higher 
than the average current, impacting reliability and generating unwanted 
variation between devices. 

Field effect transistor

Source Drain

Gate

1.2 nm oxynitride
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10S Tox=11A

High-k/Metal Gate Stack

90nm Gate Dielectric:

Tinv = 19A

ToxGL =  11A

High-k/Metal Gate Stack:

Tinv = 14.5A

ToxGL = 16A

90nm SiON

The Work-Around: High-k Insulator / Metal Gate Stack

Oxide interlayer

High-k material

Metal gate electrode
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Improving Performance
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Beyond 2005

� No longer possible by scaling alone

– New Device Structures

– New Device Design point

– New Materials
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Innovation Will Continue:
Transistor Roadmap Options

2004 2007 2010 2013 2016 2020

37 nm 25 nm 18 nm 13 nm 9 nm 6 nm Physical Gate 

back-gate

channel

isolation

buried oxide

channel

top-gate

Double-Gate CMOS

Source Drain

Gate

depletion layer

isolation

buried oxide

halo

raised source/drain

Silicon Substrate

doped channel

High k gate dielectric FinFET

Strained Si, Ge, SiGe

isolation

buried oxide

Silicon Substrate

Ultrathin SOI

In general, growing power dissipation and increasing process variability will be addressed by 

introduction of new materials and device structures, and by design innovations in circuits 

and system architecture. 
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Memory may be easier to shrink than logic. 

� Everyone is looking for a dense (cheap) cross-point memory.

� It is relatively easy to identify materials that show bistable hysteretic 

behavior (easily distinguishable, stable on/off states).  
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Relative Maturity of Nonvolatile Memory Technologies
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16Mbit Magnetic Random Access Memory (MRAM) Demo

• 4 active bits / block

• Good power supply

distribution

• Write currents

trimmed by block

Pads / peripheral circuits

Redundancy control &
Write current trimming

Pads / peripheral circuits

8Mb
unit

4 active 128Kb blocks

8Mb
unit

• 4 active bits / block

• Good power supply

distribution

• Write currents

trimmed by block

Pads / peripheral circuits

Redundancy control &
Write current trimming

Pads / peripheral circuits

8Mb
unit

4 active 128Kb blocks

8Mb
unit

Chip image:
Cross-section:

MTJ
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Post-Silicon CMOS: The Quest for the Ultimate FET

W

200n

m

Self-Aligned Carbon Nanotube FET: 

Extension Contacts Based on 

Charge-Transfer Chemical Doping

Vertical Transistor 

Based on Semiconductor Nanowires
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Intrinsic Performance of Cabon Nanotube FETs

Yu-Ming Lin et al. (IBM), EDL 2005



IBM Research 

© 2005 IBM CorporationFrontiers of Extreme Computing, October 25, 2005
19

2

m
T

g

g
f

Cπ
=Cut-off Frequency

260 GHz550 GHz800 GHzfT@ Lg = 65 nm

32 pF/m120 pF/m38 pF/mCg/L

3.5 µS27 µS12.5 µSMaximum gm

12-nm SiO28-nm HfO210-nm SiO2Gate Dielectric

~ 1.1 nm~ 1.7 nm~ 1.8 nmDiameter

Seidel et al. 

(Infineon)

Javey et al. 

(Stanford)

Lin et al.

(IBM)

Cg : gate capacitance

Intrinsic Switching Speed of CNFETs

Yu-Ming Lin et al. (IBM), EDL 2005
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Dual-Gate 

CNTFET
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Adiabatic Computing and Reversible Logic

Can we operate FETs at or below the “kT” limit?
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How much energy must be dissipated to charge a capacitor?

Adiabatic Computing

Trade-off depends 

strongly on 

device physics! 
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Applications of Adiabatic Charging 

� Drive specific capacitances which cause large dissipation.

– Power supplies

– Energy conserving data bus drivers

� Broadly implement reversible logic.

– Retractile cascade, reversible pipelines

– High-efficiency regenerative power supply (very complex)
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Reversible Logic: Implementation with FETs

� It is conceptually possible to build general purpose reversible computers 

with energy dissipation per operation going asymptotically to zero as 

frequency goes to zero.

� But, frequency must be reduced by about 1/1000 to achieve benefits with 

respect to conventional approaches to CMOS logic.  

Dissipation of 4 bit ripple counter (D. J. Frank, 1995)
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Recent Optimized Power vs Frequency Assessment

DJ Frank, MIT Workshop on Reversible Computation, February 14, 2005
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Qualitative Overall Comparison

TSPC (a fast non-energy

recovering dynamic CMOS 

logic family) 

2N-2N2P (an energy-recovering logic family) 

Conventional CMOS 

with fixed supply

Highly reversible

Scaled static 

CMOS (estimate)

DJ Frank, MIT Workshop on Reversible Computation, February 14, 2005
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Are there devices that are better suited 
than FETs for the implementation of 

reversible logic?
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Beyond Charged-Based Logic?

� Spins

� Photons

� Nanomechanics

� DNA Chemistry
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Nanoelectronics Research Initiative (NRI)

� AMD, Freescale, Micron, TI, IBM, Intel

� Joint Industry funding of University Research

� Leveraging existing NSF and new (joint NSF/NRI) funding

� Promoting both 

– Invention / Discovery (distributed research, “let many flowers bloom”)  

– Proof of Concept  (focused university consortia with outstanding facilities)

� “Extend the historical cost/function reduction, along with increased 

performance and density … orders of magnitude beyond the limits of CMOS”

– Non-charge-based logic

– Non-equilibrium systems

– Novel energy transfer mechanisms for device interconnection

– Phonon engineering

– Directed self-assembly of complex structures
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Conclusions

� Silicon CMOS logic will be extended at least another 10 years.  

– New materials and transistor structures

– Cooperative circuit and device technology co-design

� The “ultimate FET” may not contain silicon.

� New, dense, cheap memory devices are on the way.

� Reversible logic is possible, but may be practical only with 

devices that are “beyond the FET”. 

� The search for logic devices “beyond the FET” is underway,

(but there should be more focus on devices suitable for 

adiabatic computation and reversible logic)
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Thanks!
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Non-Si FET

� The potential of carbon nanotubes (CNT)

– Metallic & semiconducting nanotubes: interconnects (up to ~109A/cm2) 

& switches.

– 1D transport (low elastic and inelastic scattering low energies, ballistic 

or quasi-ballistic transport, fT≤1THz.

– Low energy dissipation (power density problem, no electromigration)

– Good control of electrostatics (“thin body devices”, no mobility 

degradation).

– Inert (no dangling bonds to passivate, wide choice of gate insulators –

high k materials) 

– Direct band-gap materials (integrate electronic & opto-electronic 

devices using the same material).
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