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My view...

= Moore’s Law is an observation about the number of devices that can
be placed on a chip at a given time.

= There is no fundamental physical reason why device densities
cannot follow the Moore’s Law trend for many more decades.

— Lithographic dimensions will eventually be shrunk to atomic scale and
lithographic processes can seamlessly combine with synthesis.

— New devices can circumvent the scaling limits of FETs.
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Topics

Making devices smaller is not the problem!

Silicon CMOS Technology will be extended for at least a decade

The “ultimate” FET may not be made of silicon

Non-silicon memory devices will scale to very small dimensions.

New devices may enable adiabatic computing and reversible logic.
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The silicon transistor in manufacturing ...

<«—35 nm—
Gate Length

90 nm technology generation
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. and in the lab.

Source

Tsi=7nm
Lgate=6nm B. Doris et al., IEDM , 2002
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Still, we are approaching some limits.
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Active Power Can Better Managed!

Thermal Mapping of Fully Operating IBM Microprocessor
(2 GHz, 1.4 V) in a System Environment

Filmstrip during bootup:

Thermal images |
during bootup: P S el

max

m

n

0.4 s per frame
Total ~ 80s

H. Hamann (IBM), ISSCC 2005
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Better Information for Layout and High-level Design

Access to data cache Access to memory controller

max

Temperatures

Power map

H. Hamann (IBM), ISSCC 2005
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The Problem with Passive Power Dissipation:
You Can’t Scale Atoms!
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Field effect transistor B PO BREEREEES

= Direct tunneling through the gate insulator will be the dominant cause of
static power dissipation.

= Single atom defects can cause local leakage currents 10 — 100x higher

than the average current, impacting reliability and generating unwanted
variation between devices.
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90nm Gate Dielectric:
Tinv =19A

ToxGL = 11A
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High-k/Metal Gate Stack

Tinv = 14.5A
ToxGL = 16A
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Improving Performance

= No longer possible by scaling alone
New Device Structures

— New Device Design point
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Innovation Will Continue:
Transistor Roadmap Options

Physical Gate

Ultrathin SOI High k gate dielectric Double-Gate CMOS FinFET

Strained Si, Ge, SiGe

buried oxide

isolation

/ lation
Silicon Substrate Silicon Substrate buried dkide

In general, growing power dissipation and increasing process variability will be addressed by
introduction of new materials and device structures, and by design innovations in circuits
and system architecture.
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Memory may be easier to shrink than logic.

= Everyone is looking for a dense (cheap) cross-point memory.
= |t is relatively easy to identify materials that show bistable hysteretic
behavior (easily distinguishable, stable on/off states).
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16Mbit Magnetic Random Access Memory (MRAM) Demo

Pads / peripheral circuits
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Chip image:
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Pads / peripheral circuits

Materials Advances

400 T T T T T

140_ T T T T T T T T T T T T T ] L 2 K i

- 1201 ] - 300 - ‘ i

= 100 '_ < 250 ' 1

% 80r 1 o 200 | -

= 60 ] = 150 L. ]

40+ - 100 | ]

20} i 50 [ T )

0_ n n i .b ._‘;. 'r' i n 7 O - T T T T T lﬁL';l T T T
- a0 w0 0 s 0 1% 150 -100 -50 0 50 100 150
Field (Oe) Field (Oe)

Frontiers of Extreme Computing, October 25, 2005 16 © 2005 IBM Corporation



ill
Hi

—

i

[

IBM Research

:

Post-Silicon CMOS: The Quest for the Ultimate FET

LU

Self-Aligned Carbon Nanotube FET: Vertical Transistor

Extension Contacts Based on Based on Semiconductor Nanowires
Charge-Transfer Chemical Doping
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:

Intrinsic Performance of Cabon Nanotube FETs

Simple back-gated CNTFET Output Characteristics

|14l [wA]

200nm

—

Vas [V]
Temperature dependence

Subthreshold Characteristics
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Intrinsic Switching Speed of CNFETSs

Cut-off Frequency

C, : gate capacitance

Lin et al. Javey et al. Seidel et al.
(Stanford) (Infineon)
Diameter ~1.8 nm ~1.7 nm ~1.1 nm
Gate Dielectric 10-nm SiO, 8-nm HfO, 12-nm SiO,
Maximum g, 12.5 uS 27 uS 3.5uS
C4/L 38 pF/m 120 pF/m 32 pF/m
fr@ L, =65nm 800 GHz 550 GHz 260 GHz
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Steep Sub-threshold Slopes for Low-Voltage Operation

Bulk switching
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Adiabatic Computing and Reversible Logic

Can we operate FETs at or below the “kT” limit?
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Adiabatic Computing

How much energy must be dissipated to charge a capacitor?
Abrupt method Quasi-static Charging (aka "adiaba

L £ 2
—> ..

- 4 2
E=1CV

This assumes T == RC.

Quasi-static Charging + Superconductivity I

Charging through a super-
conductor, which behaves as

L
PN . .
v npaate e,
/ c ﬁCVE:ﬁGEURﬁ Trade-off depends
’ > o 8 R strongly on
time

C 5 i . .
This assumes T =» BE...e dGVlce phyS|CS'
and T >> L/R.

(To implement logic in this system would require superconducting FETs.
Such FETs are possible, but there have been very few experimental results.)
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Adiabatic Switching

To take advantage of quasi-static charging in logic, there are
2 steps:

First, close switch (Ve x = Veap)

R
CLK ——AAA ,_."‘;Q_| —-
PWR ] !
Then, apply clock power (slowly)

R sw
SwRL > MW———]

Rule 1. never close a switch (turn on an FET)
while there 1s voltage across it
Rule 2: don't ramp the voltage too quickly.
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Applications of Adiabatic Charging

= Drive specific capacitances which cause large dissipation.
— Power supplies

— Energy conserving data bus drivers

= Broadly implement reversible logic.
— Retractile cascade, reversible pipelines

— High-efficiency regenerative power supply (very complex)
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Reversible Logic: Implementation with FETs

= |t is conceptually possible to build general purpose reversible computers
with energy dissipation per operation going asymptotically to zero as
frequency goes to zero.

= But, frequency must be reduced by about 1/1000 to achieve benefits with
respect to conventional approaches to CMOS logic.

Frontiers of Extreme Computing,  October 25, 2005
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Recent Optimized Power vs Frequency Assessment
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Qualitative Overall Comparison

P
C
3
—_ 1
9
=
e,
=
T 01
Q
Q.
O
S
>
<
Q
2 001
Lo
—
(@)
O
0.

A
. ) TSPC (a fast non-energy
7/
Cpnvgntlonal CMOS ad recovering dynamic CMOS
__with fixed supply < / <" logic family)
/ / /’
‘ /
S Ly
b
‘= / ,’
=TT, 2N .
’ _ 7 ., Scaled static
_ __/J’ -7 CMOS (estimate)
_ L= '2N-2N2P (an energy-recovering logic family)
7/
'/Highly reversible
1 1 1
001 0.01 0.1 T

log Frequency (rel. units)

DJ Frank, MIT Workshop on Reversible Computation, February 14, 2005

Frontiers of Extreme Computing, October 25, 2005 27 © 2005 IBM Corporation



IBM Research

Are there devices that are better suited
than FETs for the implementation of
reversible logic?
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Beyond Charged-Based Logic?

= Spins = Nanomechanics

Magnetic Feld
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Nanoelectronics Research Initiative (NRI)

= AMD, Freescale, Micron, TI, IBM, Intel
—> Joint Industry funding of University Research

= Leveraging existing NSF and new (joint NSF/NRI) funding

= Promoting both

Invention / Discovery (distributed research, “let many flowers bloom”)

Proof of Concept (focused university consortia with outstanding facilities)

= “Extend the historical cost/function reduction, along with increased
performance and density ... orders of magnitude beyond the limits of CMOS”

Non-charge-based logic

Non-equilibrium systems

Novel energy transfer mechanisms for device interconnection
Phonon engineering

Directed self-assembly of complex structures
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Conclusions

Silicon CMOS logic will be extended at least another 10 years.
— New materials and transistor structures

— Cooperative circuit and device technology co-design

The “ultimate FET” may not contain silicon.

New, dense, cheap memory devices are on the way.

Reversible logic is possible, but may be practical only with
devices that are “beyond the FET".

= The search for logic devices “beyond the FET” is underway,

(but there should be more focus on devices suitable for
adiabatic computation and reversible logic)
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Thanks!
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Non-Si FET

= The potential of carbon nanotubes (CNT)

Metallic & semiconducting nanotubes: interconnects (up to ~10°A/cm?)
& switches.

1D transport (low elastic and inelastic scattering low energies, ballistic
or quasi-ballistic transport, f;<1THz.

Low energy dissipation (power density problem, no electromigration)

Good control of electrostatics (“thin body devices”, no mobility
degradation).

Inert (no dangling bonds to passivate, wide choice of gate insulators —
high k materials)

Direct band-gap materials (integrate electronic & opto-electronic
devices using the same material).
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