

IBM T. J. Watson Research Center

Device Technology and the Future of Computing

Thomas N. Theis, Director, Physical Sciences, IBM Research

© 2005 IBM Corporation

My view...

- Moore's Law is an observation about the number of devices that can be placed on a chip at a given time.
- There is no fundamental physical reason why device densities cannot follow the Moore's Law trend for many more decades.
 - Lithographic dimensions will eventually be shrunk to atomic scale and lithographic processes can seamlessly combine with synthesis.
 - New devices can circumvent the scaling limits of FETs.

Topics

- Making devices smaller is not the problem!
- Silicon CMOS Technology will be extended for at least a decade
- The "ultimate" FET may not be made of silicon
- Non-silicon memory devices will scale to very small dimensions.
- New devices may enable adiabatic computing and reversible logic.

A Brief History of Miniaturization

	-	-		1	
		=		100	
-	_		-		-
	_		_		-

The silicon transistor in manufacturing ...

90 nm technology generation

... and in the lab.

B. Doris et al., IEDM , 2002

-	CONTRACTOR OF STREET,
-	

Still, we are approaching some limits.

Active Power Can Better Managed! Thermal Mapping of Fully Operating IBM Microprocessor (2 GHz, 1.4 V) in a System Environment

IBM Research

Filmstrip during bootup:

	-	-		-
	100			
-		_	 	-

Better Information for Layout and High-level Design

iem		Contraction of Street, or other
	-	-
and the set of the set	-	and the second second
	1000	

The Problem with Passive Power Dissipation: You Can't Scale Atoms!

- Direct tunneling through the gate insulator will be the dominant cause of static power dissipation.
- Single atom defects can cause local leakage currents 10 100x higher than the average current, impacting reliability and generating unwanted variation between devices.

The Work-Around: High-k Insulator / Metal Gate Stack

High-k/Metal Gate Stack Tinv = 14.5A ToxGL = 16A

IEM		Concession of Street,
	-	
The second second second		
	_	

Innovation
Scaling

Improving Performance

- No longer possible by scaling alone
 - New Device Structures
 - New Device Design point

Pu

Am

Cm

Np

Relative Gain in Performance

Cf

Es

Fm

Md

No

Bk

100

80

60

40

20

0

0.18um

0.13um

Technology Generation

90nm

65nm

**actinoids

Ac

Pa

Th

U

-	Contraction of Contract, Long-
-	and the second second
	And a second sec
	successive design and successive division of the local division of

In general, growing power dissipation and increasing process variability will be addressed by introduction of new materials and device structures, and by design innovations in circuits and system architecture.

Memory may be easier to shrink than logic.

- Everyone is looking for a dense (cheap) cross-point memory.
- It is relatively easy to identify materials that show bistable hysteretic behavior (easily distinguishable, stable on/off states).

_	the second s
	second in last and
_	had not been been

Relative Maturity of Nonvolatile Memory Technologies

-	Contraction of the local division of the loc
	and the second s
_	

IBM Research

16Mbit Magnetic Random Access Memory (MRAM) Demo

- 4 active bits / block
- Good power supply distribution
- Write currents trimmed by block

Redundancy control & Write current trimming

Cross-section:

Materials Advances

Contraction (Contraction) (Contraction)
 the second second second
and they been been
Concession of the second second second
and the second se
summittees along the summittee
the second se

Post-Silicon CMOS: The Quest for the Ultimate FET

Self-Aligned Carbon Nanotube FET: Extension Contacts Based on Charge-Transfer Chemical Doping

Vertical Transistor Based on Semiconductor Nanowires

-	
	and the second second
_	
_	

Intrinsic Performance of Cabon Nanotube FETs

Frontiers of Extreme Computing, October 25, 2005

-		1
-	the second second	
	The second se	
-	second states in	

Intrinsic Switching Speed of CNFETs

Cut-off Frequency

 $f_T = \frac{g_m}{2\pi C_g}$ C_g : gate capacitance

	Lin et al. (IBM)	Javey et al. (Stanford)	Seidel et al. (Infineon)
Diameter	~ 1.8 nm	~ 1.7 nm	~ 1.1 nm
Gate Dielectric	10-nm SiO ₂	8-nm HfO ₂	12-nm SiO ₂
Maximum g _m	12.5 μS	27 μS	3.5 μS
C _g /L	38 pF/m	120 pF/m	32 pF/m
f _T @ L _g = 65 nm	800 GHz	550 GHz	260 GHz

Yu-Ming Lin et al. (IBM), EDL 2005

_		-
		-
	in the second	

IBM Research

Steep Sub-threshold Slopes for Low-Voltage Operation

Sub-thermal S through band-to-band tunneling

		-17		-
	-		_/	
	-			1
_	-			
				_

Adiabatic Computing and Reversible Logic

Can we operate FETs at or below the "kT" limit?

Adiabatic Computing

How much energy must be dissipated to charge a capacitor?

(To implement logic in this system would require superconducting FETs. Such FETs are possible, but there have been very few experimental results.)

Adiabatic Switching

To take advantage of quasi-static charging in logic, there are 2 steps:

	-		-	-
-	-	-	-	-
_	in the second		100	
-	-	-	-	- C

Applications of Adiabatic Charging

- Drive specific capacitances which cause large dissipation.
 - Power supplies
 - Energy conserving data bus drivers
- Broadly implement reversible logic.

- Retractile cascade, reversible pipelines
- High-efficiency regenerative power supply (very complex)

Reversible Logic: Implementation with FETs

- It is conceptually possible to build general purpose reversible computers with energy dissipation per operation going asymptotically to zero as frequency goes to zero.
- <u>But</u>, frequency must be reduced by about 1/1000 to achieve benefits with respect to conventional approaches to CMOS logic.

Dissipation of 4 bit ripple counter (D. J. Frank, 1995)

-	-	-	-	-
	-	-		1
_	-			
		-	-	

Recent Optimized Power vs Frequency Assessment

DJ Frank, MIT Workshop on Reversible Computation, February 14, 2005

Qualitative Overall Comparison

DJ Frank, MIT Workshop on Reversible Computation, February 14, 2005

Are there devices that are better suited than FETs for the implementation of reversible logic?

Beyond Charged-Based Logic?

Nanomechanics

Photons

DNA Chemistry

Nanoelectronics Research Initiative (NRI)

- AMD, Freescale, Micron, TI, IBM, Intel
 → Joint Industry funding of University Research
- Leveraging existing NSF and new (joint NSF/NRI) funding
- Promoting both
 - Invention / Discovery (distributed research, "let many flowers bloom")
 - Proof of Concept (focused university consortia with outstanding facilities)
- "Extend the historical cost/function reduction, along with increased performance and density ... orders of magnitude beyond the limits of CMOS"
 - Non-charge-based logic
 - Non-equilibrium systems
 - Novel energy transfer mechanisms for device interconnection
 - Phonon engineering
 - Directed self-assembly of complex structures

Conclusions

- Silicon CMOS logic will be extended at least another 10 years.
 - New materials and transistor structures
 - Cooperative circuit and device technology co-design
- The "ultimate FET" may not contain silicon.
- New, dense, cheap memory devices are on the way.
- Reversible logic is possible, but may be practical only with devices that are "beyond the FET".
- The search for logic devices "beyond the FET" is underway, (but there should be more focus on devices suitable for adiabatic computation and reversible logic)

Thanks!

Frontiers of Extreme Computing, October 25, 2005

© 2005 IBM Corporation

Non-Si FET

- The potential of carbon nanotubes (CNT)
 - Metallic & semiconducting nanotubes: interconnects (up to ~10⁹A/cm²) & switches.
 - 1D transport (low elastic and inelastic scattering low energies, ballistic or quasi-ballistic transport, f_T≤1THz.
 - Low energy dissipation (power density problem, no electromigration)
 - Good control of electrostatics ("thin body devices", no mobility degradation).
 - Inert (no dangling bonds to passivate, wide choice of gate insulators high k materials)
 - Direct band-gap materials (integrate electronic & opto-electronic devices using the same material).