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Challenges to Extreme Computing

� Power consumption

� Exposure and exploitation of application Parallelism

� Memory “speed”

� Latency and clock propagation distance

� Chip I/O bandwidth

� Amdahl’s limits

� Reliability and error rates

� Programmability

� Cost of development (and applied research)

� Cost of manufacturing
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Challenges to Computer Architecture

� Expose and exploit extreme fine-grain parallelism
� Possibly multi-billion-way

� Data structure-driven

� State storage takes up much more space than logic
� 1:1 flops/byte ration infeasible

� Memory access bandwidth critical

� Latency 
� can approach a million cycles

� All actions are local

� Overhead for fine grain parallelism must be very small 
� or system can not scale

� One consequence is that global barrier synchronization is untenable

� Reliability
� Very high replication of elements

� Uncertain fault distribution

� Fault tolerance essential for good yield
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Insidious Underlying Assumptions 

� Near term incremental solutions will continue indefinitely

� COTS

� Off the shelf conventional micros

� High density dumb DRAMs

� Processor centric

� Cache based 

� Program counter driven

� > 100M gates 

� Separate memory components

� Can’t possibly afford to do anything else

� Multi-core

� More of the same

� Message passing model of computation

� Some vectors and threads thrown in as well

� ALUs are the precious resource

� Processor and memory architectures designed around them

� Manual locality management

� Programmer explicitly specified for latency avoidance
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My own warped perspective

� Data access bandwidth is the precious resource
� ALUs relegated to high availability devices (as opposed to high utilization)

� Conventional delineation of functionality is an artifact of ancient tradeoffs
� e.g., Processor, Memory, Interconnect

� Current strategy: Global parallel execution from local sequential devices 

� Computation is about continuations and state
� “continuation” specifies an environment and next action(s)

� Processors are one possible physical manifestation of a continuation
� One continuation glued to each processor

� Multithreading glues down a few continuations

� Barriers are bad
� Over constrains parallel execution and destroys fine grain parallelism

� Meta-data determines control flow in some data intensive applications

� Control flow synchronization needs to be part of the meta-data

� Its some times better to move the continuation to the data than the data 
to the continuation

� Complexity of operation needs not be derived from complexity of design
� Complex emergent global behavior may be a product of simple local rules of 

operation
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Architecture Innovation

� Extreme memory bandwidth

� Active latency hiding

� Extreme parallelism

� Message-driven split-transaction computations (parcels)

� PIM

� e.g. Kogge, Draper, Sterling, …

� Very high memory bandwidth

� Lower memory latency (on chip)

� Higher execution parallelism (banks and row-wide)

� Streaming

� Dally, Keckler, …

� Very high functional parallelism

� Low latency (between functional units)

� Higher execution parallelism (high ALU density)
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Concepts of the MIND Architecture

� Virtual to physical address translation in memory
� Global distributed shared memory thru distributed directory table

� Dynamic page migration

� Wide registers serve as context sensitive TLB

� Multithreaded control
� Unified dynamic mechanism for resource management

� Latency hiding

� Real time response

� Parcel active message-driven computing
� Decoupled split-transaction execution

� System wide latency hiding

� Move work to data instead of data to work

� Parallel atomic struct processing 
� Exploits direct access to wide rows of memory banks for fine grain parallelism and 

guarded compound operations

� Exploits parallelism for better performance

� Enables very efficient mechanisms for synchronization

� Fault tolerance through graceful degradation

� Active power management
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Latency Hiding with Parcels
with respect to System Diameter in cycles
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Latency Hiding with Parcels
Idle Time with respect to Degree of Parallelism
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Metric of Physical Locality, ττττ

� Locality of operation dependent on amount of logic and 
state that can be accessed round-trip within a single 
clock cycle

� Define τ as ratio of number of elements (e.g., gates, 
transistors) per chip to the number of elements 
accessible within a single clock cycle

� Not just a speed of light issue

� Also involves propagation through sequence of 
elements

� When I was an undergrad, τ = 1

� Today, τ < 10

� For SFQ at 100 GHz, 100 < τ < 1000

� At nano-scale, τ > 100,000
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Continuum Computer Architecture
Fundamental Concepts

� General purpose cellular architecture

� Global fine-grain cellular structure (Simultac)
� 2.5 or 3-D mesh

� Blocks interact nearest neighbor

� Merge functionality into a single simple block 
(Fonton)
� Synergism among fontons yields emergent global behavior 

of general parallel computing model
� Communications nearest neighbor

� Memory, all register with associative tags for names and type 
specification

� Data/instruction structures distributed across fontons – virtual 
addressing

� Logic performs basic operation on local data

� Dynamic adaptive and distributed resource 
management
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CCA Structure: Fonton

� Small block of fully associative tagged memory/registers

� Basic logical and arithmetic unit

� Instruction register directs control to set data paths

� Nearest neighbor communications with switching

� PRECISE binary instruction set compressed encoding
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CCA Structure: Distributed 
Associative Memory
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Data Organization and Management

� Three classes of data ensembles

� scalar values; stored in a single fonton

� complex; records of some small number of values, which if small can 

fit on a single fonton, or in adjacent fontons

� compound; distributed across fontons and coordinated by links

� Data migration

� objects are copied to adjacent fontons

� copying exploits fine grain data parallelism, even for irregular data 

structures

� objects may transit by means of wormhole routing

� Data objects are virtual named

� With tags for associative search and typing
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Address Translation

� Distributed associative mapping

� Data carries virtual tags

� Requests are directed in 2D/3D 

� Requests search sequence of fontons for reference

� Reference match either locates operand or a new 

directive (“crumbs”).

� Reference tree of links using virtual links and 

directors

� Objects can be nailed down

� Directory table provides global naming

� “Shock-wave” searches for unknown positions
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CCA Structure: Mesh Network
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CCA Structure: Gate Array

ALU ALU ALU ALUALUALU

ALU ALU ALU ALUALUALU
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Instruction Streams and Execution

� Instruction streams are just another data structure

� Can be static in place or migrate through successive 

fontons

� They are tagged as instructions and carry their target 

environment id for unique instantiation

� Data can move across instruction sequence, 

synthesizing the equivalent of a programmable 

pipeline

� Instruction sequence can move across a stored data 

sequence synthesizing the equivalent of vector 

execution
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Principal Mechanisms

� Virtual address translation and object locating

� Cellular client-server relationship

� Resource allocation (load balancing) by diffusion (adjacent copying)

� Data objects & structures distributed across fields of fontons

� Vectors are mobile data structures (workhole routing type I)

� Can move across software pipelines with separate instructions in each 

fonton pipeline stage

� Instruction threads are mobile data structures 

� Can move across ephemeral vector register with separate datum in

each fonton of register bank (“Parcels”)

� “Futures” coordinate time synchronization and space utilization

� Irregular data structure pointers direct n-furcating

� Fault isolation (reconfigurable?, at least On-Off)

� Asynchronous interfaces
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Summary

� Extremes in technology scale and clock rate will 
demand innovations in architecture

� In the limit, locality of action will dominate operation 
and bandwidth of storage access will determine 
sustained performance

� Fine grain cellular structures provide highest storage 
access bandwidths and highest peak performance

� Continuum Computer Architecture (CCA) exploits fine 
grain cellular structure for general purpose parallel 
processing

� CCA may provide convergent architecture for nano-
scale and ultra high clock rate technologies at the end 
of Moore’s Law
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