

Manufacturability and Computability at the Nano-Scale

Frontiers of Extreme Computing

Stan Williams
October 25, 2005

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

"The purpose of QSR is to perform fundamental research in physical science with a strategic intent for hp

to create new technologies that will be important to the company on a
10+ year time frame."

Discover + Invent

For a more detailed discussion of this work, see

Applied Physics A 80, March 2005

"Nanoelectronics" Special Issue

Journal of Applied Physics 97, #034301 (2005)

2005 WSJ Technology Innovation Award

1/6/2006 3

Lithography Red Brick Wall - 2010

QSR > 13 years ahead!

International Technology Roadmap for Semiconductors 2004

year	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
DRAM ½ pitch nm	90	80	70	65	57	50	45	40	35	32	28	25	22	20	18

17 nm

Acc.V Spot Magn Det WD | 500 nm 10.0 kV 2.0 65000x TLD 5.4 sl-3bGYjNILxbar with MUX

G4 nanoimprinter: Total cost \$300k

Wei Wu

- •Much more cost-effective than any commercial nanoimprinter
- •0.5 µm alignment accuracy demonstrated
- •Targeting 10 nm alignment accuracy (with J. Gao & C. Picciotto)
- •Step & repeat compatible design

Tunneling-Switch

Abstraction of a Field-Programmable Gate Array

Switchable Tunneling Resistor

Communicate with the nanowires

Use <u>coding</u> theory to design circuits!

Four kbit Cross Bar Memory with Mux/Demux

*Mux/demux propramming done by E-beam burning

No Gain,

No Logic?

TUNNELING SWITCH LATCH: EXPT DATA

Duncan Stewart

Expt: Latch works!

Signal restoration
Inversion, if desired
>100mV operating margin

No nanoscale transistor!

J. Appl. Phys. Feb 1, 2005

Logical State Storage

Signal Restoration

Signal Inversion (Logical NOT) (with no need for a nanoscale transistor)

Universal Computation!
(Finite State Machine with wired ANDs and ORs)

Area comparison of NAND gates

CMOS NAND gate

Area =
$$36 \times (FP)^2$$

= $1.2\mu^2$ @ 90 nm hp

SIMPL NAND gate

Area = $3 \times (FP)^2$ = $0.01 \mu^2$ @ 30 nm hp No V_{DD}, no static power! Low dynamic power Register and Logic Permute inputs and outputs

1 x 17 Latch and Logic Array

Experimentally measured NAND truth table – Output on R_{pull down} measured at indicated Step

Junction A	Junction B	R _{pull down}	Step #
0	0	1	10
0	1	1	19
1	1	0	28
1	0	1	37

Experimental V vs. t data for NAND demonstration

Summary of Serial Implication Logic

- SIMPL is simple!
- Tunneling switches state machines.
- Linear array + demux; high density.
- State encoded with impedance, not voltage.
- No static power dissipation.
- Nonvolatile.
- Conditional copy with inversion is 'implication'
- Compiler construction completed.
- nanoCircuits built and currently under test.

1/6/2006 22

