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Introduction
• IC Logic technology:  following Moore’s Law by 
rapidly scaling into deep submicron regime 
– Increased speed and function density
– Lower power dissipation  and cost per function

• The scaling results in major MOSFET challenges, 
including:
– Simultaneously maintaining satisfactory Ion (drive 
current) and Ileak

– High gate leakage current for very thin gate dielectrics
– Control of short channel effects (SCEs) for very small 
transistors

– Power dissipation
– Etc.

• Potential solutions & approaches:
– Material and process (front end):  high-k gate dielectric, 
metal gate electrodes, strained Si, …

– Structural:  non-classical CMOS device structures
– Many innovations needed in rapid succession
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International Technology Roadmap for 
Semiconductors (ITRS)
• Industry-wide effort to map IC technology 
generations for the next 15 years

– Over 800 experts from around the world

• From companies, consortia, and universities

– For each calendar year

• Projects scaling of technology characteristics and 
requirements, based on meeting key Moore’s Law targets 

• Assesses key challenges and gaps

• Lists best-known potential solutions

– Projections are based on modeling, surveys, literature, 
experts’ technical judgment

• This talk is based on both the 2003 ITRS and on 
preliminary data from 2005 ITRS (not yet released)
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Year of Production 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2015 2016 2018

Technology Node hp90 hp65 hp45 hp32 hp22

DRAM ½ Pitch (nm) 100 90 80 70 65 57 50 45 35 32 25 22 18

MPU Physical 

Gate Length 

(nm)

45 37 32 28 25 22 20 18 14 13 10 9 7

Vdd (V) 1.2 1.2 1.1 1.1 1.1 1 1 1 0.9 0.9 0.8 0.8 0.7

Chip Frequency 

(MHz) 

On-chip local 

clock
2,976 4,171 5,204 6,783 9,285 10,972 12,369 15,079 20,065 22,980 33,403 39,683 53,207

Allowable 

Maximum Power

High-

performance 

with heatsink 

(W)

149 158 167 180 189 200 210 218 240 251 270 288 300

Cost-performance 

(W)
80 84 91 98 104 109 114 120 131 138 148 158 168

Functions per chip 

at production 

(million transistors 

[Mtransistors]) 

153 193 243 307 386 487 614 773 1,227 1,546 2,454 3,092 4,908

Key Overall Chip Parameters for High-Performance Logic, Data 
from 2003 ITRS

• Technology generations defined by DRAM half pitch 

• Gate length (Lg) ≤≤≤≤ 0.5 X DRAM half pitch

–Rapid scaling of Lg is driven by need to improve transistor speed

• Clock frequency, functions per chip (density) scale rapidly, but allowable 
power dissipation rises slowly with scaling: limited by ability to remove 
heat
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MOSFET Scaling Approach:  2005 ITRS

• MASTAR computer modeling software is 

used:  detailed, analytical MOSFET models 

with key MOSFET physics included

– Initial choice of scaled MOSFET parameters is 

made

– Using MASTAR, MOSFET parameters are 

iteratively varied to meet ITRS targets for either 

• Scaling of transistor speed OR

• Specific (low) levels of leakage current
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ITRS Drivers for Different Applications
• High-performance chips (MPU, for example)

– Driver:  maximize chip speed����maximize transistor 
performance (metric: ττττ, transistor intrinsic delay [or, 
equivalently, 1/τ]τ]τ]τ])

• Goal of ITRS scaling:  1/ττττ increases at ~ 17% per 
year, historical rate

– Must maximize Ion
– Consequently, Ileak is relatively high

• Low-power chips (mobile applications)

– Driver:  minimize chip power (to conserve battery 
power) ����minimize Ileak
• Goal of ITRS scaling:  low levels of Ileak

– Consequently, 1/ττττ is considerably less than  for 
high-performance logic

• This talk focuses on high-performance logic,
which largely drives the technology
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1/ττττ and Isd,leak scaling for High-Performance and Low-
Power Logic.  Data from 2003 ITRS.
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Chip clock:  ITRS projection

Conclusion:  transistor speed 

improvement is a critical enabler of 

chip clock frequency improvement 
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Potential Problem with Chip Power Dissipation Scaling:  
High-Performance Logic, Data from 2003 ITRS
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Potential Solutions for Power Dissipation 
Problems, High-Performance Logic

• Increasingly common approach: multiple 
transistor types on a chip����multi-Vt, multi-
Tox, etc.

– Only utilize high-performance, high-leakage 
transistors in critical paths—lower leakage 
transistors everywhere else

– Improves flexibility for SOC

• Circuit and architectural techniques:  pass 
gates, power down circuit blocks, etc.

• Improved heat removal, electro-thermal 
modeling and design

• Electrical or dynamically adjustable Vt
devices (future possibility)
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Difficult Transistor Scaling Issues
• Assumption:  highly scaled MOSFETs with 
the targeted characteristics can be 
successfully designed and fabricated

• However, with scaling, meeting transistor 
requirements will require significant 
technology innovations
– Issue:  High gate leakage ���� static power 
dissipation

• Direct tunneling increases rapidly as Tox is 
reduced

• Potential solution:  high-k gate dielectric

– Issue:  Polysilicon depletion in gate electrode ����
increased effective Tox, reduced Ion

– Issue:  Need for enhanced channel mobility

– Etc.
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For Low-Power Logic, Gate Leakage Current Density Limit Versus 
Simulated Gate Leakage due to Direct Tunneling.  Data from 2003 ITRS.
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High K Gate Dielectric to Reduce Direct Tunneling

• Equivalent Oxide Thickness = EOT = Tox = TK * (3.9/K), where 3.9 is 
relative dielectric constant of SiO2 and K is relative dielectric 
constant of high K material

– C = Cox = εεεεox/Tox

– To first order, MOSFET characteristics with high-k are same as for SiO2

• Because TK > Tox, direct tunneling leakage much reduced with high K

– If energy barrier is high enough

• Current leading candidate materials:  HfO2 (Keff~15 - 30); HfSiOx

(Keff~12 - 16)

– Materials, process, integration issues to solve

Electrode

Si substrate

Tox
SiO2

TK

High-k Material

Electrode

Si substrate
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Difficult Transistor Scaling Issues
• With scaling, meeting transistor 
requirements requires significant 
technology innovations

– Issue: High gate leakage ���� static power 
dissipation

• Potential solution:  high-k gate dielectric

– Issue: polysilicon depletion in gate electrode ����
increased effective Tox, reduced Ion

• Potential solution:  metal gate electrodes

– Issue: Need for enhanced channel mobility

– Etc.
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Polysilicon Depletion and Substrate 
Quantum Effects

•Tox,electric = Tox+ (Kox/Ksi)*  

(Wd,Poly)

–Kox = 3.9

–Ksi = 11.9

•Tox,electric = Tox + (0.33)* (Wd,Poly)

–Wd,Poly~1/(poly doping)
0.5

����increase poly doping to 

reduce Wd,Poly with scaling

–But max. poly doping is 

limited����can’t reduce 

Wd,Poly too much

•Poly depletion become more 

critical with Tox scaling

–Eventually, poly will reach 

its limit of effectiveness

TOx

Polysilicon

Gate

Gate Oxide

Substrate

Depletion Layer

Inversion Layer

Wd,Poly
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Metal Gate Electrodes

• Metal gate electrodes are a potential 
solution when poly “runs out of steam”:  
probably implemented in 2008 or beyond

– No depletion, very low resistance gate, no boron 
penetration, compatibility with high-k

– Issues

• Different work functions needed for PMOS and 
NMOS==>2 different metals may be needed

–Process complexity, process integration 
problems, cost

• Etching of metal electrodes

• New materials:  major challenge
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Difficult Transistor Scaling Issues
• With scaling, meeting transistor 
requirements requires significant 
technology innovations

– Issue: High gate leakage ���� static power 
dissipation

• Potential solution: high-k gate dielectric

– Issue: Poly depletion in gate electrode ����
increased effective Tox, reduced Ion

• Potential solution: metal gate electrodes

– Issue: Need for enhanced channel mobility

• Potential solution:  enhanced mobility via 
strain engineering

– Etc.
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Uniaxial Process Induced Stress for 
Enhanced Mobility

From K. Mistry et al., “Delaying Forever: Uniaxial Strained 

Silicon Transistors in a 90nm CMOS Technology,” 2004 VLSI 

Technology Symposium, pp. 50-51.

NMOS:  uniaxial tensile stress 

from stressed SiN film

PMOS:  uniaxial compressive 

stress from sel. SiGe in S/D
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Results from Uniaxial Process Induced 
Stress

From K. Mistry et al., “Delaying Forever: Uniaxial Strained Silicon Transistors in 

a 90nm CMOS Technology,” 2004 VLSI Technology Symposium, pp. 50-51.

NMOS Id,sat
PMOS Id,lin
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Limits of Scaling Planar, Bulk MOSFETs
• 65 nm tech. generation (2007, Lg = 25nm) and 
beyond:  increased difficulty in meeting all device 
requirements with classical planar, bulk CMOS 
(even with high-k, metal electrodes, strained Si…)

– Control of SCE 

– Impact of quantum effects and statistical variation

– Impact of high substrate doping

– Control of series S/D resistance (Rseries,s/d)

– Others

• Alternative device structures (non-classical 
CMOS) may be utilized 

– Ultra thin body, fully depleted:  single-gate SOI
and multiple-gate transistors
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Transistor Structures: Planar Bulk & Fully Depleted SOI

REFERNCES

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling 

Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International 

Journal of High-Speed Electronics and Systems, 12, 267-293 (2002).

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

Planar Bulk                                   Fully Depleted

SOI

SD

G

Substrate

Depletion Region

+Wafer cost / availability

- SCE scaling difficult

- High doping effects and  

Statistical variation 

- Parasitic junction 
capacitance

+ Lower junction cap

+ Light doping possible
+ Vt can be set by WF of 
Metal Gate Electrode

- SCE scaling difficult

- Sensitivity to Si 
thickness (very thin)

-Wafer cost/availability

Substrate

BOX

SD
G
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Field Lines for Single-Gate SOI MOSFETs

Single-Gate SOI

Courtesy:   Prof. J-P Colinge, UC-Davis

BOX BOX

S D

G

S D

G

G

 E-Field lines 

Regular SOI MOSFETDouble-gate MOSFET

To reduce SCE’s, 

aggressively reduce 

Si layer thickness
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Double Gate Transistor Structure

+ Enhanced scalability

+ Lower junction capacitance

+ Light doping possible

+ Vt can be set by WF of 
metal gate electrode

+ ~2x drive current

- ~2x gate capacitance

- High Rseries,s/d����raised S/D

- Complex process

Ultra-

thin FD

S D

Top

Bottom

Double-Gate SOI:

BOX

SUBSTRATE

REFERENCES

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and 

Front-End Process Integration: Scaling Trends, Challenges, and 

Potential Solutions Through The End of The Roadmap, 

International Journal of High-Speed Electronics and Systems, 

12, 267-293 (2002).

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

Summary:  more advanced, optimal 
device structure, but difficult to 
fabricate, particularly in this SOI 
configuration
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Field Lines for Single and Double-Gate MOSFETs
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Double gates 

electrically shield 
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Single-Gate SOI Double-Gate
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Double Gate Transistor Structure

+ Enhanced scalability

+ Lower junction capacitance

+ Light doping possible

+ Vt can be set by WF of 
metal gate electrode

+ ~2x drive current

- ~2x gate capacitance

- High Rseries,s/d����raised S/D

- Complex process

Ultra-

thin FD

S D

Top

Bottom

Double-Gate SOI:

BOX

SUBSTRATE

REFERENCES

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and 

Front-End Process Integration: Scaling Trends, Challenges, and 

Potential Solutions Through The End of The Roadmap, 

International Journal of High-Speed Electronics and Systems, 

12, 267-293 (2002).

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

Summary:  more advanced, optimal 
device structure, but difficult to 
fabricate, particularly in this SOI 
configuration
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Other Double-Gate Transistor Structures (FinFET)

Poly GatePoly GatePoly GatePoly Gate

Source DrainSource DrainSource Drain

Fin

Source Drain

Top View of 

FinFET

Arrow indicates 

Current flow

Key advantage:  relatively 

conventional processing, 

largely compatible with 

current techniques����current 

leading approach

Perspective 

view of FinFET.  

Fin is colored 

yellow.  

Gate overlaps fin here

SiO2

GateGate

DrainDrainSourceSource
SiOSiO22 SiOSiO22

SiO2

GateGate

DrainDrainSourceSource
SiOSiO22 SiOSiO22

SiO2

BOX

GateGate

DrainDrainSourceSource
SiOSiO22 SiOSiO22

Courtesy:  T-J. King and 

C. Hu, UC-Berkeley

Fin

Substrate Silicon
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Types of Multiple-Gate Devices
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Timeline of Projected Key Technology Innovations from ’03 ITRS, PIDS 
Section

This timeline is from PIDS evaluation for the  2003 ITRS

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Strained Si--HP

High-k (Low Power)

Elevated S/D

High-k (HP)

Metal Gate (HP, dual gate)

Metal Gate (Low Power, dual gate)

Ultra-thin Body (UTB) SOI, single gate (HP)

Metal gate (near midgap for UTBSOI)

Strained Si (Low Power)

Multiple Gate (HP)

Ultra-thin Body (UTB) SOI, single gate (Low power)

Multiple Gate (Low Power)

Quasi-ballistic transport (HP)

Quasi-ballistic transport (LOP)

Production

Production

Production

Production

Production

Production

Production

Production

Production

Production

Production

Production

Production

Production
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Conclusions
• Rapid transistor scaling is projected to continue through 

the end of the Roadmap in 2020

– Transistor performance will improve rapidly, but leakage & SCEs
will be difficult to control

• Transistor performance improvement is a key enabler of chip 
speed improvement

– Many technology innovations will be needed in a relatively short
time to enable this rapid scaling

• Material and process innovations include high-k gate dielectric, 
metal gate electrodes, and enhanced mobility through strained 
silicon

– High-k and metal gate electrode needed in 2008

• Structural potential solutions:  non-classical CMOS

• Non-classical CMOS and process and material innovations 
will likely be combined in the ultimate, end-of-Roadmap 
device

– Well under 10nm MOSFETs expected by the end of the Roadmap

• Power dissipation, especially static, is a growing problem 
with scaling: integrated, innovative approaches 
needed
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