Workshop on Frontiers of Extreme Computing Santa Cruz, CA October 24, 2005

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

Peter M. Zeitzoff

Outline

Introduction

- MOSFET scaling and its impact
- Material and process approaches and solutions
- Non-classical CMOS
- Conclusions

SEMATECH, the SEMATECH logo, AMRC, Advanced Materials Research Center, ATDF, the ATDF logo, Advanced Technology Development Facility, ISMI and International SEMATECH Manufacturing Initiative are servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

Introduction

- IC Logic technology: following Moore's Law by rapidly scaling into deep submicron regime
 - Increased speed and function density
 - Lower power dissipation and cost per function
- The scaling results in major MOSFET challenges, including:
 - Simultaneously maintaining satisfactory I_{on} (drive current) and I_{leak}
 - High gate leakage current for very thin gate dielectrics
 - Control of short channel effects (SCEs) for very small transistors
 - Power dissipation
 - Etc.
 - Potential solutions & approaches:
 - Material and process (front end): high-k gate dielectric, metal gate electrodes, strained Si, ...
 - Structural: non-classical CMOS device structures
 - Many innovations needed in rapid succession

International Technology Roadmap for Semiconductors (ITRS)

- Industry-wide effort to map IC technology generations for the next 15 years
 - Over 800 experts from around the world
 - From companies, consortia, and universities
 - For each calendar year
 - Projects scaling of technology characteristics and requirements, based on meeting key Moore's Law targets
 - Assesses key challenges and gaps
 - Lists best-known potential solutions
 - Projections are based on modeling, surveys, literature, experts' technical judgment
- This talk is based on both the 2003 ITRS and on preliminary data from 2005 ITRS (not yet released)

Key Overall Chip Parameters for High-Performance Logic, Data from 2003 ITRS

Year of Production	2003	2004	2005	2006	2007	2008	2009	2010	2012	2013	2015	2016	2018
Technology Node		hp90	13.5×+2		hp65			hp45		hp32		hp22	
DRAM 1/2 Pitch (nm)	100	90	80	70	65	57	50	45	35	32	25	22	18
MPU Physical					-			-					
Gate Length	45	37	32	28	25	22	20	18	14	13	10	9	7
(nm)													
Vdd (V)	1.2	1.2	1.1	1.1	1.1	1	1	1	0.9	0.9	0.8	0.8	0.7
Chip Frequency (MHz)				1		~		1		1			
On-chip local clock	2,976	4,171	5,204	6,783	9,285	10,972	12,369	15,079	20,065	22,980	33,403	39,683	53,207
Allowable Maximum Power													
High- performance with heatsink (W)	149	158	167	180	189	200	210	218	240	251	270	288	300
Cost-performance (W)	80	84	91	98	104	109	114	120	131	138	148	158	168
Functions per chip at production (million transistors [Mtransistors])	153	193	243	307	386	487	614	773	1,227	1,546	2,454	3,092	4,908

Technology generations defined by DRAM half pitch

• Gate length (L_q) \leq 0.5 X DRAM half pitch

 Rapid scaling of L_g is driven by need to improve transistor speed
Clock frequency, functions per chip (density) scale rapidly, <u>but allowable</u> power dissipation rises slowly with scaling: limited by ability to remove heat 5

Outline

- Introduction
- MOSFET scaling and its impact
- Material and process approaches and solutions
- Non-classical CMOS
- Conclusions

MOSFET Scaling Approach: 2005 ITRS

- MASTAR computer modeling software is used: detailed, analytical MOSFET models with key MOSFET physics included
 - Initial choice of scaled MOSFET parameters is made
 - Using MASTAR, MOSFET parameters are iteratively varied to meet ITRS targets for either
 - Scaling of transistor speed OR
 - Specific (low) levels of leakage current

ITRS Drivers for Different Applications

- High-performance chips (MPU, for example)
 - Driver: maximize chip speed → maximize transistor performance (metric: τ, transistor intrinsic delay [or, equivalently, 1/τ])
 - Goal of ITRS scaling: 1/τ increases at ~ 17% per year, historical rate
 - Must maximize I_{on}
 - Consequently, I_{leak} is relatively high
 - **Low-power** chips (mobile applications)
 - Driver: minimize chip power (to conserve battery power) → minimize I_{leak}
 - Goal of ITRS scaling: low levels of I_{leak}
 - Consequently, $1/\tau$ is considerably less than for high-performance logic

This talk focuses on high-performance logic, which largely drives the technology

$1/\tau$ and $I_{sd,leak}$ scaling for High-Performance and Low-Power Logic. Data from 2003 ITRS.

Frequency scaling: Transistor Intrinsic Speed and Chip Clock Frequency for High-Performance Logic. Data from 2003 ITRS.

Potential Problem with Chip Power Dissipation Scaling: High-Performance Logic, Data from 2003 ITRS

all transistors are high performance, low V_t type

Potential Solutions for Power Dissipation Problems, High-Performance Logic

- Increasingly common approach: multiple transistor types on a chip→multi-V_t, multi-T_{ox}, etc.
 - Only utilize high-performance, high-leakage transistors in critical paths—lower leakage transistors everywhere else
 - Improves flexibility for SOC
- Circuit and architectural techniques: pass gates, power down circuit blocks, etc.
- Improved heat removal, electro-thermal modeling and design
- Electrical or dynamically adjustable V_t devices (future possibility)

Outline

- Introduction
- MOSFET scaling and its impact
- Material and process approaches and solutions
- Non-classical CMOS
- Conclusions

Difficult Transistor Scaling Issues

- <u>Assumption</u>: highly scaled MOSFETs with the targeted characteristics can be successfully designed and fabricated
- However, with scaling, meeting transistor requirements will require significant technology innovations
 - Issue: High gate leakage → static power dissipation
 - Direct tunneling increases rapidly as T_{ox} is reduced
 - Potential solution: high-k gate dielectric
 - Issue: Polysilicon depletion in gate electrode → increased effective T_{ox}, reduced I_{on}
 - Issue: Need for enhanced channel mobility
 - Etc.

- Equivalent Oxide Thickness = EOT = $T_{ox} = T_{K}^{*}$ (3.9/K), where 3.9 is relative dielectric constant of SiO2 and K is relative dielectric constant of high K material
 - $\mathbf{C} = \mathbf{C}_{ox} = \varepsilon_{ox} / \mathbf{T}_{ox}$
 - To first order, MOSFET characteristics with high-k are same as for SiO2

- Because $T_{K} > T_{ox}$, direct tunneling leakage much reduced with high K
 - If energy barrier is high enough
- Current leading candidate materials: HfO₂ (K_{eff}~15 30); HfSiO_x (K_{eff}~12 16)
 - Materials, process, integration issues to solve

Difficult Transistor Scaling Issues

- With scaling, meeting transistor requirements requires significant technology innovations
 - Issue: High gate leakage → static power dissipation
 - Potential solution: high-k gate dielectric
 - Issue: polysilicon depletion in gate electrode → increased effective T_{ox}, reduced I_{on}
 - Potential solution: metal gate electrodes
 - Issue: Need for enhanced channel mobility
 - Etc.

Polysilicon Depletion and Substrate Quantum Effects

Metal Gate Electrodes

- Metal gate electrodes are a potential solution when poly "runs out of steam": probably implemented in 2008 or beyond
 - <u>No depletion</u>, very low resistance gate, no boron penetration, compatibility with high-k
 - Issues
 - Different work functions needed for PMOS and NMOS==>2 different metals may be needed
 - Process complexity, process integration problems, cost
 - Etching of metal electrodes
 - New materials: major challenge

Difficult Transistor Scaling Issues

- With scaling, meeting transistor requirements requires significant technology innovations
 - Issue: High gate leakage → static power dissipation
 - Potential solution: high-k gate dielectric
 - Issue: Poly depletion in gate electrode → increased effective T_{ox}, reduced I_{on}
 - Potential solution: metal gate electrodes

- Etc.

- Issue: Need for enhanced channel mobility
 - Potential solution: enhanced mobility via strain engineering
 - SEMATECH

Uniaxial Process Induced Stress for Enhanced Mobility

NMOS: uniaxial tensile stress from stressed SiN film

Fig. 3 TEM of NMOS transistor showing high tensile stress nitride overlayer.

PMOS: uniaxial compressive stress from sel. SiGe in S/D

Fig. 4 TEM of PMOS showing SiGe heteroepitaxial S/D inducing uniaxial strain.

From K. Mistry et al., "Delaying Forever: Uniaxial Strained Silicon Transistors in a 90nm CMOS Technology," 2004 VLSI Technology Symposium, pp. 50-51. 21

Results from Uniaxial Process Induced Stress

From K. Mistry et al., "Delaying Forever: Uniaxial Strained Silicon Transistors in a 90nm CMOS Technology," 2004 VLSI Technology Symposium, pp. 50-51.

Outline

- Introduction
- Scaling and its impact
- Material and process approaches and solutions
- Non-classical CMOS
- Conclusions

Limits of Scaling Planar, Bulk MOSFETs

- 65 nm tech. generation (2007, L_g = 25nm) and beyond: increased difficulty in meeting all device requirements with classical planar, bulk CMOS (even with high-k, metal electrodes, strained Si...)
 - Control of SCE
 - Impact of quantum effects and statistical variation
 - Impact of high substrate doping
 - Control of series S/D resistance (R_{series,s/d})
 - Others
- Alternative device structures (<u>non-classical</u> <u>CMOS</u>) may be utilized
 - Ultra thin body, fully depleted: single-gate SOI and multiple-gate transistors

Transistor Structures: Planar Bulk & Fully Depleted SOI Fully Depleted Planar Bulk SO G G D S S D BOX **Depletion Region Substrate Substrate** + Lower junction cap + Wafer cost / availability + Light doping possible - SCE scaling difficult + Vt can be set by WF of - High doping effects and **Metal Gate Electrode** Statistical variation - SCE scaling difficult - Sensitivity to Si - Parasitic junction thickness (very thin) capacitance - Wafer cost/availability

REFERNCES

- 1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International Journal of High-Speed Electronics and Systems, **12**, 267-293 (2002).
- 2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

SEMATECH

Double Gate Transistor Structure

REFERENCES

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International Journal of High-Speed Electronics and Systems, **12**, 267-293 (2002).

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

- + Enhanced scalability
- + Lower junction capacitance
- + Light doping possible
- + Vt can be set by WF of metal gate electrode
- + ~2x drive current
- ~2x gate capacitance
- High R_{series,s/d}→raised S/D
- Complex process

Summary: more advanced, optimal device structure, but difficult to fabricate, particularly in this SOI configuration

Accelerating the next technology revolution.

| In | 12

Double-Gate SOI:

Field Lines for Single and Double-Gate MOSFETs

Double Gate Transistor Structure

D

Тор

Bottom

SUBSTRATE

Double-Gate SOI:

S

BOX

Ultra-

thin FD

REFERENCES

1. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, International Journal of High-Speed Electronics and Systems, **12**, 267-293 (2002).

2. Mark Bohr, ECS Meeting PV 2001-2, Spring, 2001.

Enhanced scalability

- + Lower junction capacitance
- + Light doping possible
- + Vt can be set by WF of metal gate electrode
- + ~2x drive current
- ~2x gate capacitance
- High R_{series,s/d}→raised S/D
- Complex process

Summary: more advanced, optimal device structure, but difficult to fabricate, particularly in this SOI configuration

Outline

- Introduction
- Scaling and its impact
- Material and process approaches and solutions
- Non-classical CMOS
- <u>Conclusions</u>

Timeline of Projected Key Technology Innovations from '03 ITRS, PIDS Section This timeline is from PIDS evaluation for the 2003 ITRS

2	003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Strained SiHP		Pro	duction														
ligh-k (Low Power)				Pro	duction												
Elevated S/D						Production											
ligh-k (HP)					Pro	oduction						·//~					
Metal Gate (HP, dual gat	te)				Pro	duction											
Metal Gate (Low Power,	tal Gate (Low Power, dual gate)																
Ultra-thin Body (JTB) SOI	, sing	le gat	te (HP) Pro	oduction										
Metal gate (near	mid	gap f	or UT	BSOI		Pro	oduction					-228					
Strained Si (Low Power)						Pro	oduction										
		-200						Dr	oduction								
	2										7467						
Ultra-thin Body (UTB) SOI, single gate (Low power)									Production								
Multiple Gate (Low Power)													Production				
Quasi-ballistic transport (HP)											Production						

Accelerating the next technology revolution.

SEMATECH

Conclusions

•

- Rapid transistor scaling is projected to continue through the end of the Roadmap in 2020
 - Transistor performance will improve rapidly, but leakage & SCEs will be difficult to control
 - Transistor performance improvement is a key enabler of chip speed improvement
 - Many technology innovations will be needed in a relatively short time to enable this rapid scaling
 - Material and process innovations include high-k gate dielectric, metal gate electrodes, and enhanced mobility through strained silicon
 - High-k and metal gate electrode needed in 2008
 - Structural potential solutions: non-classical CMOS
 - Non-classical CMOS and process and material innovations will likely be combined in the ultimate, end-of-Roadmap device
 - Well under 10nm MOSFETs expected by the end of the Roadmap
- Power dissipation, especially static, is a growing problem with scaling: integrated, innovative approaches needed