

Michael P. Frank

FAMU-FSU College of Engineering

http://www.eng.fsu.edu/~mpf

Outline of Talk

- Computational <u>energy efficiency</u> (η_{ec}) as <u>the</u> ultimate performance limiter in practical computer systems...
 - Limits on the η_{ec} attainable in conventional machines
- Reversible computing (RC) as the <u>only</u> way out in the long term, after the next decade or two...
 - Review of some basic concepts of reversible logic
- The "Reversible Computing Question:"
 - Can we ever really build competitive RC machines?
- Why practical Reversible Computing is difficult...
 - and why it might nevertheless be possible.
- A Call to Action!

Moore's Law and Performance

- Gordon Moore, 1975:
 - Devices per IC can be doubled every 18 months
 - Borne out by history, so far...

- Every 1.5 years: ~½ as much stored energy per bit!
 - This has enabled us to throw away bits (and their energies)
 2× more frequently every 1.5 years, at reasonable power levels!
 - And thereby double processor performance 2× every 1.5 years!
- Increased <u>energy efficiency</u> of computation is a <u>prerequisite</u> for improved raw performance!
 - Given realistic fixed constraints on total power consumption.

Efficiency in General, and Energy Efficiency

- The efficiency η of any process is: $\eta = P/C$
 - Where P = Amount of some valued product produced
 - and C = Amount of some costly resources consumed
- In energy efficiency η_e , the cost C measures energy.
- We can talk about the energy efficiency of:
 - A heat engine: $\eta_{he} = W/Q$, where:
 - W =work energy output, Q =heat energy input
 - An energy recovering process : $\eta_{er} = E_{end}/E_{start}$, where:
 - E_{end} = available energy at end of process,
 - E_{start} = energy input at start of process
 - A computer: $\eta_{\rm ec} = N_{\rm ops}/E_{\rm cons}$, where:
 - N_{ops} = # useful operations performed
 - E_{cons} = free-energy consumed

Trend of Minimum Transistor Switching Energy

Some Lower Bounds on Energy Dissipation

- In today's 90 nm VLSI technology, for minimal operations (e.g., conventional switching of a minimum-sized transistor):
 - − $E_{\rm diss.op}$ is on the order of 1 fJ (femtojoule) → $\eta_{\rm ec} \le 10^{15}$ ops/sec/watt.
 - Will be a bit better in coming technologies (65 nm, maybe 45 nm)
- But, conventional digital technologies are subject to several lower bounds on their energy dissipation $E_{\rm diss,op}$ for digital transitions (logic / storage / communication operations),
 - And thus, corresponding upper bounds on their energy efficiency.
- Some of the known bounds include:
 - Leakage-based limit for high-performance field-effect transistors:
 - Maybe roughly ~5 aJ (attojoules) $\rightarrow \eta_{\rm ec} \le 2 \times 10^{17}$ operations/sec./watt
 - Reliability-based limit for all non-energy-recovering technologies:
 - On the order of 1 eV (electron-volt) $\rightarrow \eta_{ec} \le 6 \times 10^{18}$ ops./sec/watt
 - von Neumann-Landauer (VNL) bound for all irreversible technologies:
 - Exactly $kT \ln 2 \approx 18 \text{ meV}$ (per bit erasure) $\rightarrow \eta_{\rm ec} \lesssim 3.5 \times 10^{20}$ ops/sec/watt
 - For systems whose waste heat ultimately winds up in Earth's atmosphere, » *i.e.*, at temperature $T \approx T_{\text{room}} = 300 \text{ K}$.

Reliability Bound on Logic Signal Energies

- Let E_{sig} denote the *logic signal energy*,
 - The energy *actively involved* (transferred, manipulated) in the process of storing, transmitting, or transforming a bit's worth of digital information.
 - But note that "involved" does not necessarily mean "dissipated!"
- As a result of fundamental thermodynamic considerations, it is required that $E_{\text{sig}} \leq k_{\text{B}}T_{\text{sig}} \ln r$ (with quantum corrections that are small for large r)
 - Where $k_{\rm B}$ is Boltzmann's constant, 1.38×10⁻¹² J/K;
 - and T_{sig} is the temperature in the degrees of freedom carrying the signal;
 - and r is the reliability factor, i.e., the improbability of error, $1/p_{\rm err}$.
- In <u>non-energy-recovering</u> logic technologies (totally dominant today)
 - Basically <u>all</u> of the signal energy is dissipated to heat on each operation.
 - And often additional energy (e.g., short-circuit power) as well.
- In this case, minimum sustainable dissipation is $E_{\text{diss,op}} \gtrsim k_{\text{B}}T_{\text{env}} \ln r$,
 - Where T_{env} is now the temperature of the <u>waste-heat reservoir</u> (environment)
 - Averages around 300 K (room temperature) in Earth's atmosphere
- For a decent r of e.g. 2×10^{17} , this minimum is on the order $\sim 40 \ kT \approx 1 \ eV$.
 - Therefore, if we want energy efficiency $\eta_{\rm ec}$ > ~1 op/eV, we <u>must recover</u> some of the signal energy for later reuse.
 - Rather than dissipating it all to heat with each manipulation of the signal.

The von Neumann-Landauer (VNL) Principle

- First alluded to by John von Neumann in 1949.
 - Developed explicitly by Rolf Landauer of IBM in 1961.
- The principle is a <u>rigorous theorem</u> of physics!
 - It follows from the reversibility of fundamental dynamics.
- A correct statement of the principle is the following:
 - Any process that loses or *obliviously erases* 1 bit of known (correlated) information increases total entropy by at least $\Delta S = 1$ bit = $k_{\rm B} \ln 2$,

and implies eventual system-level dissipation of at least $E_{\rm diss} = \Delta S \cdot T_{\rm env} = k_{\rm B} T_{\rm env} \ln 2$

of free energy to the environment as waste heat.

- where $k_{\rm B} = {\rm Log} \ {\rm e} = 1.38 \times 10^{-23} \ {\rm J/K}$ is Boltzmann's constant
- and T_{env} = temperature of the waste-heat reservoir (environment)
 - Not less than about room temperature (300 K) for earthbound computers. → implies $E_{\rm diss} \ge 18 \ {\rm meV}$.

Types of Dynamical Systems

(We're using the physicist's, not the complexity theorist's meaning of "nondeterministic" below)

 Nondeterministic, irreversible

 Deterministic, irreversible

 Nondeterministic, reversible

Physics is Reversible

- <u>All</u> the successful models of fundamental physics are expressible in the *Hamiltonian* formalism.
 - Including: Classical mechanics, quantum mechanics, special and general relativity, quantum field theories.
 - The latter two (GR & QFT) are backed up by enormous, overwhelming mountains of evidence confirming their predictions!
 - 11 decimal places of precision so far! And, no contradicting evidence.
- In Hamiltonian systems, the dynamical state x(t) obeys a differential equation that's first-order in time, dx/dt = g(x) (where g is some function)
 - This immediately implies determinism of the dynamics.
- And, since the time differential dt can be taken to be negative, the formalism <u>also</u> implies reversibility.
 - Thus, dynamical reversibility is one of the most firmlyestablished, <u>inviolable</u> facts of fundamental physics.

Illustration of VNL Principle

- Either digital state is initially encoded by any of *N* possible physical microstates
 - Illustrated as 4 in this simple example (the real number would usually be much larger)
 - Initial entropy S = log[#microstates] = log 4 = 2 bits.
- Reversibility of physics ensures "bit erasure" operation <u>can't possibly</u> merge two microstates, so it <u>must</u> double the possible microstates in the digital state!
 - Entropy S = log[#microstates] increases by log 2 = 1 bit = (log e)(ln 2) = k_B ln 2.
 - To prevent entropy from accumulating locally, it must be expelled into the environment.

Reversible Computing

- The basic idea is simply this:
 - Don't discard information when performing logic / storage / communication operations!
 - Instead, just reversibly (invertibly) transform it, in place!
- When reversible digital operations are implemented using well-designed energy-recovering circuitry,
 - This can result in local energy dissipation $E_{\text{diss}} \ll E_{\text{sig}}$,
 - this has already been empirically demonstrated by many groups.
 - and (in principle) total energy dissipation $E_{\text{diss}} << kT \ln 2$.
 - This is easily shown in theory & simulations,
 - but we are not yet to the point of demonstrating such low levels of total dissipation empirically in a physical experiment.
 - Achieving this goal will require very careful design,
 - and verifying it requires very sensitive measurement equipment.

How Reversible Logic Avoids the von Neumann-Landauer Bound

- We arrange our logical manipulations to never attempt to merge two distinct digital states,
 - but only to reversibly transform them from one state to another!
- E.g., illustrated is a reversible operation "cCLR" (controlled clear)
 - Non-oblivious "erasure"
 - It and its inverse (cSET) enable arbitrary logic!

Notations for a Useful Primitive: Controlled-SET or cSET(a,b)

- Function: If a=1, then set b:=1.
 - Conditionally reversible, if the precondition ab=0 is met.
 - Note it's 1-to-1 on the <u>subset of states used</u>

 Sufficient to avoid Landauer's principle!
 - Sufficient to avoid Landauer's principle!
- We can implement cSET in dual-rail CMOS with a pair of transmission gates
 - Each needs just 2 transistors,
 - plus one controlling "drive" signal
- This 2-bit semi-reversible operation with its inverse cCLR form a universal set for reversible (and irreversible) logic!
 - If we compose them in special ways.
 - And include latches for sequential logic.

Example Implementation of a Reversible CMOS "cSET/cCLR" gate

Formal semantics for a controlled-SET (cSET) operation:

• The below implementation uses dual-rail signals, 2 T-gates, and an external control signal (drive...)

Reversible OR (ror) from cSET

- Semantics: rom(a,b) ::= if a|b, c:=1.
 - Set c:=1, on the condition that either a or b is 1.
 - Reversible under precondition that initially $a \mid b \rightarrow c$.
- Two parallel csets simultaneously driving a shared output bus implements the ror operation!
 - This type of gate composition was not traditionally considered.
- Similarly one can do rAND, and reversible versions of all operations.
 - Logic synthesis with these is extremely straightforward...

Spacetime diagram

CMOS Gate Implementing rLatch / rUnLatch

Symmetric Reversible Latch

connect in mem

- The hardware is just a CMOS transmission gate again
 - This time controlled by a clock, with the data signal driving
- Concise, symmetric hardware icon Just a short orthogonal line
- In spacetime diagram, thin strapping lines denote inter-node connection.

Cadence Simulation Results

Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL

- Graph shows power dissipation vs. frequency
 - in 8-stage shift register.
- At moderate frequencies (1 MHz),
 - Reversible uses
 1/100th the power of irreversible!
- At ultra-low power (1 pW/transistor)
 - Reversible is 100× faster than irreversible!
- Minimum energy dissipation < 1 eV!
 - 500× lower than best irreversible!
 - 500× higher computational energy efficiency!
- Energy <u>transferred</u> is still ~10 fJ (~100 keV)
 - So, energy recovery efficiency is 99.999%!
 - Not including losses in power supply, though

Reversible and/or Adiabatic VLSI Chips Designed @ MIT, 1996-1999

By Frank and other then-students in the MIT Reversible Computing group, under CS/AI lab members Tom Knight and Norm Margolus.

A Few Highlights Of Reversible Computing History

- Charles Bennett @ IBM, 1973-1989:
 - Reversible Turing machines & emulation algorithms
 - · Can emulate irreversible machines on reversible architectures.
 - But, the emulation introduces some inefficiencies
 - Early chemical & Brownian-motion implementation concepts.
- Ed Fredkin and Tom Toffoli's group @ MIT, late 1970's/early 1980's
 - Reversible logic gates and networks (space/time diagrams)
 - Ballistic mechanical and adiabatic circuit implementation proposals
- Paul Benioff, Richard Feynman, Norm Margolus, mid-1980s
 - Abstract quantum-mechanical models of "classical" reversible computers.
 - The field of quantum computing eventually emerged from this line of work
- Several groups @ Caltech, ISI, Amherst, Xerox, MIT, mid '80s-mid '90s:
 - Concepts for & implementations of "adiabatic circuits" in VLSI technology
 - Small explosion of adiabatic circuit literature since then!
- Mid 1990s-today:
 - Better understanding of overheads, tradeoffs, asymptotic scaling
 - A few groups have begun development of post-CMOS implementations
 - Most notably, the Quantum-dot Cellular Automata group at Notre Dame

Reversibility and Reliability

- A widespread claim: "Future low-level digital devices will necessarily be highly unreliable."
 - This comes from questionable lines of reasoning, such as:
 - Faster → more energy efficient → lower bit energies → high rate of bit errors from thermal noise
 - However, this scaling strategy doesn't work, because:
 - High rate of thermal errors → high power dissipation from error correction → less energy efficient → ultimately slower!
- But in contrast, using reversible computing, in principle, we can achieve arbitrarily high energy efficiency and arbitrarily high reliability!
 - The key is to <u>keep bit energies reasonably high!</u>
 - Improve efficiency by <u>recovering</u> more and more of the bit energy...

Minimizing Energy Dissipation Due to Thermal Errors

- Let $p_{err} = 1/r$ be the bit-error probability per operation.
 - Where r quantifies the "reliability level."
 - And $p_{ok} = 1 p_{err}$ is the probability the bit is correct
- The minumum entropy increase $\triangle S$ per op due to error occurrence is given by the (binary) Shannon entropy of the bit-value after the operation:

$$H(p_{\rm err}) = p_{\rm err} \log p_{\rm err}^{-1} + p_{\rm ok} \log p_{\rm ok}^{-1}$$
.

- For r >> 1 (i.e., as $r \to \infty$), this increase approaches 0: $\Delta S = H(p_{\rm err}) \approx p_{\rm err} \log p_{\rm err}^{-1} = (\log r)/r \to 0$
- Thus, the required energy dissipation per op also approaches 0:

$$E_{\rm diss} = T\Delta S \approx (kT \ln r)/r \rightarrow 0$$

• Could get the same result by assuming the signal energy $E_{\text{sig}} = kT \ln r$ required for reliability level r is dissipated each time an error occurs:

$$E_{\text{diss}} = p_{\text{err}} E_{\text{sig}} = p_{\text{err}} (kT \ln r) = (kT \ln r)/r \rightarrow 0 \text{ as } r \rightarrow \infty.$$

- Further, note that as $r \to \infty$, the required signal energy grows slowly...
 - Only logarithmically in the reliability, *i.e.*, $E_{\text{sig}} = \Theta(\log r)$.

Some Device-Level Requirements for Reversible Computing

- A good reversible device technology should have:
 - Low manufacturing cost ϕ_d per device
 - Important for good overall (system-level) cost-efficiency
 - Low rate of static "standby" power dissipation $P_{\rm sby}$ due to energy leakage, thermally-induced errors, etc.
 - Required for energy-efficient storage especially (but also in logic)
 - Low energy coefficient $c_{\text{Et}} = E_{\text{diss}} \cdot t_{\text{tr}}$ (energy dissipated per operation, times transition time) for adiabatic transitions.
 - Implies that we can achieve a high operating frequency (and thus good cost-performance) at a given level of energy efficiency.
 - High maximum available transition frequency f_{max} .
 - Especially important for those applications in which the latency of serial threads of computation dominates the total operating costs

Energy & Entropy Coefficients in Electronics

- For a transition involving the adiabatic transfer of an amount Q of charge along a path with resistance R:
 - The raw (local) energy coefficient is $c_{\rm Et} = E_{\rm diss}t = P_{\rm diss}t^2 = IVt^2 = I^2Rt^2 = Q^2R$.
 - Where V is the voltage drop along the path.
 - The entropy coefficient is $c_{St} = Q^2 R / T_{path}$.
 - where $T_{\rm path}$ is the local thermodynamic temperature in the path.
 - The effective (global) energy coefficient is $c_{\rm Et,eff} = Q^2 R(T_{\rm env}/T_{\rm path})$.
 - Note that we pay a penalty for low-T operation!

Requirements for Energy-Recovering Clock/Power Supplies

- All of the known reversible computing schemes invoke a periodic global signal that synchronizes and drives adiabatic transitions in the logic.
 - For good system-level energy efficiency, this signal must oscillate resonantly and near-ballistically, with a high effective quality factor.
- Several factors make the design of a resonant clock distributor that has satisfactorily high efficiency quite difficult:
 - Any uncompensated back-action of logic on resonator
 - In some resonators, Q factor may scale unfavorably with size
 - Excess stored energy in resonator may hurt effective quality factor
- There's no reason to think that it's <u>impossible</u> to do it...
 - But it is definitely a nontrivial hurdle, that we reversible computing researchers need to face up to, pretty urgently...
 - If we want to make reversible computing practical in time to avoid an extended period of stagnation in computer performance growth.

MEMS Quasi-Trapezoidal Resonator: 1st Fabbed Prototype

(Funding source: SRC CSR program)

(PATENT PENDING, UNIVERSITY OF FLORIDA)

General Reasons Why Practical Reversible Computing is Difficult

- Complex physical systems typically include many naturally occurring channels & mechanisms for energy dissipation.
 - Electromagnetic emission, phonon excitation, scattering, etc.
 - All must be delicately blocked to truly approach zero dissipation.
- We really must direct & keep track of where <u>all</u> (or nearly all) of the system's active energy is going at all times!
 - Accurately control/track the system's trajectory in configuration space.
 - Requires great care in design, & great precision in modeling.
- The physical architecture of the system is tightly constrained by the requirement for (near-) reversibility of the logic.
 - Gate-level synchrony, careful load balancing, elimination of unwanted reflections from impedance non-uniformities, etc.
 - Reversible logic, functional units, HW architectures & SW algorithms.
- Reversible logic itself introduces substantial (polynomial) space-time complexity overheads.
 - These bite a large chunk off of its energy-efficiency benefits.
 - This overhead appears to be inevitable in general-purpose apps.

Why Reversible Computing Might Still Be Possible, Eventually...

- Fundamentally, we know from quantum theory that physical systems intrinsically evolve with <u>no</u> inherent entropy increase.
 - A precisely characterized unitary evolution $\rho(t) = U(t)\rho(0)$ conserves the entropy $S(\rho)$ of any initial mixed state ρ .
- Thus, all "apparent" entropy increase ultimately arises from:
 - Imprecision in our knowledge of the fundamental physical laws (U).
 - Physical modeling techniques that (for practical reasons) <u>explicitly</u> neglect some of the information that we could infer about the state.
 - E.g., State vector projection, reduced density matrices, decoherence.
- To build systems with arbitrarily slow entropy increase, "just:"
 - Refine our knowledge of physical laws (values of constants, etc.) to ever more precision.
 - Develop ever more accurate, less approximate techniques for analytically/numerically modeling the time evolution of larger systems.
 - Learn how to design & construct increasingly complex systems whose engineered built-in dynamics is increasingly useful & powerful,
 - while still remaining feasible to model and track accurately.

One Big Reason for Optimism

- For a machine to have a high degree of classical reversibility doesn't
 appear to require that we maintain global phase coherence, or track the
 entire detailed evolution of all the quantum microstates...
 - It only requires that the rate of inflation of phase space volume is not too fast, and that most states end up *somewhere* in the desired region
 - Knowing which states go where within the desired region is not important

A Call to Action

- The world of computing is threatened by permanent performance-per-power stagnation in 1-2 decades...
 - We really should try hard to avoid this, if at all possible!
 - A wide variety of very important applications will be impacted.
- Many more of the nation's (and the world's) top physicists and computer scientists must be recruited,
 - to tackle the great "Reversible Computing Challenge."
- Urgently needed: A major new funding program;
 a "Manhattan Project" for energy-efficient computing!
 - Mission: Demonstrate computing beyond the von
 Neumann-Landauer limit in a practical, scalable machine!
 - Or, if it really can't be done for some reason, find a completely rock-solid proof from fundamental physics showing why.

Conclusions

- Practical reversible computing will become a necessity within our lifetimes,
 - if we want substantial progress in computing performance/power beyond the next 1-2 decades.
- Much progress in our understanding of RC has been made in the past three decades...
 - But much important work still remains to be done.
- I encourage my audience to help me urge the nation's best thinkers to join the cause of finally answering the Reversible Computing Question, once and for all.