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Outline

 Computing & Communication Foundations
* QIS Bumper Stickers

* Quantum Computing

* Quantum Key Distribution

* Support agencies

* Where next?

Oct 25, 2005



Why Foundations?
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Foundations Everywhere
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Quantum Information
Bumper Stickers

* Quantum computation

— State superposition provides parallelism

* Quantum communication

— No cloning theorem provides unforgability

* Quantum metrology

— Entanglement provides consistent measurement
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Quantum Computation
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QOIP and Moore’s Law
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Power of Qubits

*Qubit = state of a quantum two-level system

‘w> — a‘ O> + ;B‘ 1>, ‘0{‘2 + ‘ﬁ‘z —1 Continuum of states!
1 classical bit has two states: 0 and 1 ﬁh
1 qubit has “infinitely” many states! t

4

*Physical realizations of qubits:
ephoton polarization
eclectron spin
enuclear spin
epair of electron states in a trapped 1on/atom
*magnetic flux state in a Josephson junction ring
*Cooper pair number states, etc.
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Power of Qubits

*Multiple qubits
A classical 3-bit state: 001
A quantum 3-qubit state:

]000)+ £/001)+71010)+ 6]100) +£[011) + ¢ 101) + | 110)+ @[ 111)

N qubits is worth 2" classical bits!
eEntanglement

00)+[01)+10)+[11) = (|0) +[1))[0) +|1)) Not entangled

00)*|11)
Entangled!
01)%|10)
1> |0> |1>
00> + B|11> /
> Optical EPR photon pair or NEVER
Photons Parametric
Amplifier
i 1> 10> 10>
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Power of Quantum Computation

*Quantum Parallelism

Input register Output register
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+ +
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+ : | +

as 100> a; F(lhoo>)
+ | +

2" values of F(x) all in one go!!

o, 101> ‘uﬁﬂllm:s]
+ e
o, 110> a; F{lh0>)

+ L
ag > |

An exponential amount of computation has been achieved in the time it
takes to compute the function on a single input!
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Quantum Complexity
Provably Q-hard algorithms
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QIP: An Example Algorithm

»Permutation Order-Finding (Chuang et al, ‘00)
*Permutation & is an operation that rearranges a set of objects

D E

7T(y)

D

*Order r of a permutation applied to element y of a set is the minimum
number of times © must be applied to put y back in its original position

Problem has wide range of applications (Cryptography)
Oct 25, 2005
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Classical versus Quantum

Classical approach: Quantum approach:
-Series of trials to find the x-th *Order is the period of a
permutation 7z<(y). function

£,0) = 7)
Find equality. When n?(y)= *Quantum Fourier Transform
7°(y) then ord(n) | a-b allows us to find periods of all

7(y) with one transform

Number of trials needed Exponential speedup--
increases exponentially with the Minimum number of steps
number of bits representing y proportional to bits in y
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Classical Order-Finding
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Quantum Order-Finding

Quantum

approach: A
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Quantum
Fourier
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Quantum Fourier Transform

(QFT)

* Variant of the Discrete Fourier Transform
(DFT) that can be implemented on a quantum
computer

At the heart of Factoring and Order-Finding
problems

* QFT transforms state amplitudes to state
amplitudes

— NOT qubits to qubits

Oct 25, 2005 16



QFT 1n Order Fmdmg
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States are measured according to their probability

‘Many states at P produce the same 7%(y)
*QFT produces their frequency

()

‘Probably answer reflects large number of states at P
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Status of Computing

* Proof of concept factoring (2001)

Chuang et al. 4-bit Shor algorithm
implementation (2001)

*Ongoing 1on-trap implementation effort
*Some optical lattice efforts

*Solid-state spins moving slowly

Oct 25, 2005 18



Ion Trap Investigations

* Done (per ARDA Roadmap April 2, 2004)

— 2-qubit operations demonstrated
— Long decoherence times in progress
— 3-10 qubit operations started
* Proposed (individual researchers)
— 10-20 qubit registers
— Architectures with 1000 circulating qubits
* Possibility
— 20 logical qubits (2-level error correct 1000 qubits)
— 10 bit factoring

Oct 25, 2005
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Optical Lattices

* Done (individual researchers)

— 110 site lattice loaded from BEC with 200
atoms/site

* Proposed (individual researchers)

— 8000 sites with CO2 lasers proposed by
Berkeley QuIST project

* Filling factor 1/2
— Permits 80 logical qubits
— Permits 40 bit factoring

Oct 25, 2005
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Architectural Roadblocks

Classical control

— Large feature sizes for control lines mean large
computers

Wiring and corners
— Moving qubits leads to decoherence

Error correction
— More check bits than data bits

Cumulative effect

— May need 100,000 times longer decoherence times than

required by operations alone (Balensiefer et. al,
ISCA32, 2005, pp186-196).
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Quantum Security
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Quantum Key Distribution

* Use unforgability to detect eavesdropping
* Shared generation of secure key

» Extensive classical processing

Oct 25, 2005
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Quantum
Cryptography
BB&4 Protocol

Aaron VanDevender (vandvndn@uiuc, edu)
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NEC 2-week demonstration May 31, 2005
(AFRL-QuIST inside?)

ID Quantique Turnkey System

13kb/sec sifted key
over 16km
commercial access
optical network

Available throughout Switzerland
June 05
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Support Agencies
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DARPA Mission
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DARPA Organization
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QIP in DARPA Organization
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NSF Mission

National Science Foundation Act of 1950

Oct 25, 2005

(Public Law 810507):

To promote the progress of science;

to advance the national health, prosperity,
and welfare;

to secure the national defense:
and for other purposes.
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NSF Organization
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QIP in NSF Organization
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CISE Mission

CISE has three goals:

Oct 25, 2005

to enable the United States to remain competitive in
computing, communications, and information science and
engineering;

to promote understanding of the principles and uses of

advanced computing, communications, and information
systems 1n service to society; and

to contribute to universal, transparent, and affordable
participation in an information-based society.
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Desired Project Characteristics

« DARPA — Fast Results
— Military need
— Technical challenges and plan for meeting them

— Transition plan

e NSF — Sustained Effort

— Asks fundamental questions

— Maintains U.S. competitiveness
— Societal need

— Broad participation

Oct 25, 2005
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DARPA Program Highlights
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implementation (2001)
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NSF Program Highlights

Some student projects

¢ Charlene Ahn, “Continuous quantum error correction via quantum feedback ...”
Instltute for Quantul I I John Cortese, “Classical communication over quantum channels”
Sumit Daftuar, “The communication cost of entanglement transformations”
Jim Harrington, “Calculating the accuracy threshold for toric codes”
° Theresa Lynn, “Active feedback strategies for motion of a single atom ...”
InfOI I I Iatlon at CalteCh Carlos Mochon, “Computing with anyons”
Ben Rahn, “Exact and approximate performance of concatenated codes”
Federico Spedalieri, “Distinguishing separable and entangled states”
John Stockton, “Entanglement in atomic ensembles”
Ben Toner, “Communication cost of simulating quantum correlations”
Jake West, “Universal quantum computation using projective measurement”

Quantum Complexity and Polynomial
Approximations of Boolean Functions

Oct 25, 2005

Quantum and classical tradeoffs C AREER AW ar d

Classical simulation of quantum

communication. YaOyun Shl at U

Phase transition in biological signaling systems . .
S . Michigan
Education plan: theory of computation courses
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Where Next for Communication?

« DARPA

— Long range demonstrations between metronets
— GtoA and GtoS demonstrations
— ConOps for QKD

* NSF

— New protocols

— Security bounds

Oct 25, 2005
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Where Next for Computation?

New algorithms
— Exponential speedups, please!
— (Hashing outdoes unstructured search)
New applications of existing algorithms
— Pell’s equation
— Random walk
Scalable architectures
— Controllable
— Fault tolerant
Medium-scale implementations
— 10’s of qubits
— Probably beyond NSF resources
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The Near Future

* NSF budget 1s down 3% 1n 2005, looks flat
* DoD will need transitions beyond crypto

* New algorithms and protocols are needed
for the next push

— Scalable architectures too

Oct 25, 2005
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The Want Ads
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Program Directors Sought

* Numeric, Symbolic, Geometric computing
* Emerging Models and Technologies
* Interdisciplinary capability

— Across cluster, division, NSF, and globally
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Contact

* Vacancy announcements appear on www.nsf.gov

e Meanwhile contact
Michael Foster

Division Director

Computing & Communication Foundations
National Science Foundation

4201 Wilson Boulevard

Arlington, VA 22230

703-292-8910

mfoster@nsf.gov

Oct 25, 2005
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