
1

Scaling to the End of Silicon:

Performance Projections and Promising Paths

Frontiers of Extreme Computing

October 24, 2005

Doug Burger

The University of Texas at Austin

2

Where are HPC Systems Going?

• Scaling of uniprocessor performance has been historical driver

– 50-55% per year for a significant period

– Systems with a constant number of processors benefit

• Transistor scaling may continue to the end of the roadmap

– However, system scaling must change considerably

– The “last classical computer” will look very different from today’s systems

• Outline of driving factors and views

– Exploitation of concurrency - are more threads the only answer?

• We are driving to a domain where tens to hundreds of thousands of processors are
the sole answer for HPC systems

– How will power affect system and architecture design?

– How to provide the programmability, flexibility, efficiency, and performance
future systems need?

3

Shift in Uniprocessor Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e
rf
o
rm

a
n
c
e
 (
v
s
.
V
A
X
-1
1
/7
8
0
)

25%/year

52%/year

20%/year

Slide by Dave Patterson

4

Historical Sources of Performance

• Four factors

– Device speed (17%/year)

– Pipelining (reduced FO4) - ~18%/year from 1990-2004

– Improved CPI

– Number of processors/chip - n/a

• Device speed will continue for some time

• Deeper pipelining is effectively finished

– Due to both power and diminishing returns

– Ends the era of 40%/year clock improvements

• CPI is actually increasing

– Effect of deeper pipelines, slower memories

– On-chip delays

– Simpler cores due to power

• Number of processors/chip starting to grow

– “Passing the buck” to the programmer

– Have heard multiple takes on this from HPC researchers

5

Performance Scaling

Single-processor Performance Scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

L
o
g
2
 S
p
e
e
d
u
p

New programming

models needed?

Architectural frequency wall

RISC ILP wall

55%/year improvement

65 nm 45 nm 32nm 22nm90 nm

Pipelining

RISC/CISC CPI

Device speed

Concurrency

Conventional architectures

cannot improve performance

Industry shifts to frequency

dominated strategy

Assume successful

17%/year scaling

6

Opportunity to End of Si Roadmap

• How much performance growth between now and 2020 per unit area of
silicon?

– 17% device scaling gives 10x performance boost

– 50x increase in device count provides what level of performance?

– Linear growth in performance: 500x performance boost

• What have we gotten historically?

– 500x performance boost over that same period

– However, a large fraction of that is increased frequency

– Without that, historical boost would be 50X

– The extra 10x needs to come from concurrency

• Opportunity

– Many simpler processors per unit area provide more FLOP/transistor efficiency

– May be efficiency issues (communication, load balancing)

– May be programmability issues

• $64K question: how can we get that efficiency while circumventing the above
problems?

7

Granularity versus Number of Processors

• Historically, designers opted for improved CPI over number of processors

• Shifting due to lack of CPI improvements (finite core issue widths)

– What will be granularity of CMPs?

– What will be power dissipation curves?

• Small number of heavyweight cores versus many lightweight cores?

• Problem with CMPs

– Linear increase in per-transistor activity factors

– If granularity is constant, number of processors scales with number of
transistors

– 32 lightweight processors today in 90nm become ~1000 at 17nm

– Last-generation uniprocessor designs exploited lower transistor efficiency

– Will bound the number of processors

• Interested in HPC researchers’ thoughts on granularity issue

– Key question: is the ideal architecture as many lightweight cores as possible,
with frequency/device speed scaled down to make power dissipation tractable?

8

Scaling Power to Increase Concurrency

• Four strategies for reducing consumed power to increase per-chip concurrency

exploitable

• 1) Adjust electrical parameters (supply/threshold voltages, high Vt devices, etc.)

– Critical area, but more of a circuits and tools issue

• 2) Reduce active switching through tools (clock gating of unnecessary logic)

• 3) Reduce powered-up transistors

– 5B transistors available

– How many can be powered up at any time?

– Answer depends on success at reducing leakage

– Needs to be a different set, otherwise why build the transistors?

• 4) More efficient computational models

• Note: not factoring in the effects of unreliable devices/redundant computation!

9

Increasing Execution Efficiency

• Goal: reduce the energy consumed per operation
– But must not hamstring performance

– Example: eliminating prediction for branches

• Move work from the hardware to the compiler

– Example 1: Superscalar -> VLIW

– Example 2: Superscalar -> Explicit target architectures

• Microarchitectures that exploit less

– Loop reuse in TRIPS

• This area will need to be a major focus of research

10

Example 1: Out-of-Order Overheads

• A day in the life of a RISC/CISC instruction

– ISA does not support out-of-order execution

– Fetch a small number of instructions

– Scan them for branches, predict

– Rename all of them, looking for dependences

– Load them into an associative issue window

– Issue them, hit large-ported register file

– Write them back on a large, wide bypass network

– Track lots of state for each instruction to support pipeline flushes

• BUT: performance from in-order architectures hurt badly by cache misses

– Unless working set fits precisely in the cache

– Take a bit hit in CPI, need that many more processors!

11

TRIPS Approach to Execution Efficiency

• EDGE (Explicit Data Graph Execution) architectures have two
key features
– Block-atomic execution

– Direct instruction communication

• Form large blocks of instructions with no internal control flow
transfer

– We use hyperblocks with predication

– Control flow transfers (branches) only happen on block boundaries

• Form dataflow graphs of instructions, map directly to 2-D
substrate

– Instructions communicate directly from ALU to ALU

– Registers only read/written at begin/end of blocks

– Static placement optimizations

• Co-locate communicating instructions on same or nearby ALU

• Place loads close to cache banks, etc.

12

Architectural Structure of a TRIPS Block

1 - 128

instruction

DFG

Reg. banks

Reg. banks
M

em
o

ry

M
em

o
ry

PC

PC

32 read instructions

32 write instructions

32 loads
32 stores

PC read

terminating

branch

Block characteristics:

• Fixed size:

– 128 instructions max

– L1 and core expands empty 32-
inst chunks to NOPs

• Load/store IDs:

– Maximum of 32 loads+stores
may be emitted, but blocks can
hold more than 32

• Registers:

– 8 read insts. max to reg. bank (4
banks = max of 32)

– 8 write insts. max to reg bank (4
banks = max of 32)

• Control flow:

– Exactly one branch emitted

– Blocks may hold more

Address+targets sent to

memory, data returned

to target

13

Block Compilation

Data flow graph

i1) add r1, r2, r3

i2) add r7, r2, r1

i3) ld r4, (r1)

i4) add r5, r4, #1

i5) beqz r5, 0xdeac

Intermediate Code

Inputs (r2, r3)

Temporaries (r1, r4, r5)

Outputs (r7)

Compiler

Transforms

Intermediate

Code

Dataflow

Graph
Mapping

TRIPS

Code

i1

i2 i3

i4

i5

r7

r3r2

14

Block Mapping

Data flow graph

Scheduler

Mapping onto array

Intermediate

Code

Data Flow

Graph
Mapping

TRIPS

Code

(1,1)
i1

i3i2

i4

i5

r2 r3

i1

i2 i3

i4

i5

r7

r3r2

15

TRIPS Block Flow

– Compiler partitions program into “mini-graphs”

– Within each graph, instructions directly target others

– These mini-graphs execute like highly complex instructions

– Reduce per-instruction overheads, amortized over a block

16

Floorplan of First-cut Prototype

17

TRIPS/Alpha Activity Comparison

0%

50%

100%

150%

200%

250%

300%

insts Predictions I-cache Registers LSQ Issue

window

Operand

net

Structure

18

Example 2: Loop Reuse

• Simple microarchitectural extension: loop reuse

• If block that has been mapped to a set of reservation stations is the same as

the next one to be executed, just refresh the valid bits

– Signal can be piggybacked on block commit signal

– Re-inject block inputs to re-run the block

• Implication for loops: fetch/decode eliminated while in the loop

– Further gain in energy efficiency

• Loop must fit into the processor issue window

– How to scale up the issue window for different loops?

19

Multigranular “Elastic” Threads

G R R R R

D E E E E

D E E E E

D E E E E

D E E E E

I

I

I

I

• Problems with TRIPS microarchitecture

– Limited register/memory bandwidth

– Number of tiles per core is fixed at design time

– Multithreading is a hack to vary granularity

• Achievable by distributing all support tiles

– Assume each tile can hold >= 1 block (128 insts.)

• Solutions being implemented to design challenges

– Scalable cache capacity with number of tiles

– Scalable memory bandwidth (at the processor interface)

• Does not address chip-level memory bandwidth

� Config three: 6 threads, 1 thread on 8 tiles, 1 thread

on 4 tiles, 4 threads on 1 tile each

� Config two: 2 threads, 1 block @ 128 insts/tile

� Config one: 1 thread, 16 blocks @ 8 insts/tile

T1

20

Multigranular “Elastic” Threads

G R R R R

D E E E E

D E E E E

D E E E E

D E E E E

I

I

I

I

� Config three: 6 threads, 1 thread on 8 tiles, 1 thread

on 4 tiles, 4 threads on 1 tile each

� Config two: 2 threads, 1 block @ 128 insts/tile

T1

T2

� Config one: 1 thread, 16 blocks @ 8 insts/tile

• Problems with TRIPS microarchitecture

– Limited register/memory bandwidth

– Number of tiles per core is fixed at design time

– Multithreading is a hack to vary granularity

• Achievable by distributing all support tiles

– Assume each tile can hold >= 1 block (128 insts.)

• Solutions being implemented to design challenges

– Scalable cache capacity with number of tiles

– Scalable memory bandwidth (at the processor interface)

• Does not address chip-level memory bandwidth

21

Multigranular “Elastic” Threads

G R R R R

D E E E E

D E E E E

D E E E E

D E E E E

I

I

I

I

� Config three: 6 threads, 1 thread on 8 tiles, 1 thread

on 4 tiles, 4 threads on 1 tile each

T1

T2

T3 T4

T5 T6
� Config two: 2 threads, 1 block @ 128 insts/tile

� Config one: 1 thread, 16 blocks @ 8 insts/tile

• Problems with TRIPS microarchitecture

– Limited register/memory bandwidth

– Number of tiles per core is fixed at design time

– Multithreading is a hack to vary granularity

• Achievable by distributing all support tiles

– Assume each tile can hold >= 1 block (128 insts.)

• Solutions being implemented to design challenges

– Scalable cache capacity with number of tiles

– Scalable memory bandwidth (at the processor interface)

• Does not address chip-level memory bandwidth

22

Looking forward

3-D integrated memory

(stacked DRAM, MRAM, optical I/O)

• 2012-era EDGE CMP

– 8GHz at reasonable clock rate

– 2 TFlops peak

– 256 PEs

– 32K instruction window

• Flexible mapping of threads to Pes

– 256 small processors

– Or, small number of large processors

– Embedded network

• Need high-speed BW

• Ongoing analysis

– What will be power dissipation?

– How well does this design compare to
fixed-granularity CMPs?

– Can we exploit direct core-to-core
communication without killing the
programmer?

Map thread to PEs based on granularity,

power, or cache working set

23

Conclusions

• Potential for 2-3 orders of magnitude more performance from CMOS

• Significant uncertainties remain

– How well will the devices scale?

– What are application needs, how many different designs will they support?

• Concurrency will be key

• Must use existing silicon much more efficiently

– How many significant changes will the installed base support?

– New ISAs? New parallel programming models?

• Architecture community can use guidance on these questions

	Scaling to the End of Silicon:�Performance Projections and Promising Paths
	Where are HPC Systems Going?
	Shift in Uniprocessor Performance
	Historical Sources of Performance
	Performance Scaling
	Opportunity to End of Si Roadmap
	Granularity versus Number of Processors
	Scaling Power to Increase Concurrency
	Increasing Execution Efficiency
	Example 1: Out-of-Order Overheads
	TRIPS Approach to Execution Efficiency
	Architectural Structure of a TRIPS Block
	Block Compilation
	Block Mapping
	TRIPS Block Flow
	Floorplan of First-cut Prototype
	TRIPS/Alpha Activity Comparison
	Example 2: Loop Reuse
	Multigranular “Elastic” Threads
	Multigranular “Elastic” Threads
	Multigranular “Elastic” Threads
	Looking forward
	Conclusions

