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Where are HPC Systems Going?

• Scaling of uniprocessor performance has been historical driver

– 50-55% per year for a significant period

– Systems with a constant number of processors benefit

• Transistor scaling may continue to the end of the roadmap

– However, system scaling must change considerably

– The “last classical computer” will look very different from today’s systems

• Outline of driving factors and views

– Exploitation of concurrency - are more threads the only answer?

• We are driving to a domain where tens to hundreds of thousands of processors are 
the sole answer for HPC systems

– How will power affect system and architecture design?

– How to provide the programmability, flexibility, efficiency, and performance 
future systems need?
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Shift in Uniprocessor Performance
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Historical Sources of Performance

• Four factors

– Device speed (17%/year)

– Pipelining (reduced FO4) - ~18%/year from 1990-2004

– Improved CPI

– Number of processors/chip - n/a

• Device speed will continue for some time

• Deeper pipelining is effectively finished

– Due to both power and diminishing returns

– Ends the era of 40%/year clock improvements

• CPI is actually increasing

– Effect of deeper pipelines, slower memories

– On-chip delays

– Simpler cores due to power

• Number of processors/chip starting to grow

– “Passing the buck” to the programmer

– Have heard multiple takes on this from HPC researchers
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Performance Scaling

Single-processor Performance Scaling
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Opportunity to End of Si Roadmap

• How much performance growth between now and 2020 per unit area of 
silicon?

– 17% device scaling gives 10x performance boost

– 50x increase in device count provides what level of performance?

– Linear growth in performance: 500x performance boost

• What have we gotten historically?

– 500x performance boost over that same period

– However, a large fraction of that is increased frequency

– Without that, historical boost would be 50X

– The extra 10x needs to come from concurrency

• Opportunity

– Many simpler processors per unit area provide more FLOP/transistor efficiency

– May be efficiency issues (communication, load balancing)

– May be programmability issues

• $64K question: how can we get that efficiency while circumventing the above 
problems?



7

Granularity versus Number of Processors

• Historically, designers opted for improved CPI over number of processors

• Shifting due to lack of CPI improvements (finite core issue widths)

– What will be granularity of CMPs?

– What will be power dissipation curves?

• Small number of heavyweight cores versus many lightweight cores?

• Problem with CMPs

– Linear increase in per-transistor activity factors

– If granularity is constant, number of processors scales with number of 
transistors

– 32 lightweight processors today in 90nm become ~1000 at 17nm

– Last-generation uniprocessor designs exploited lower transistor efficiency

– Will bound the number of processors

• Interested in HPC researchers’ thoughts on granularity issue

– Key question: is the ideal architecture as many lightweight cores as possible, 
with frequency/device speed scaled down to make power dissipation tractable?
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Scaling Power to Increase Concurrency

• Four strategies for reducing consumed power to increase per-chip concurrency 

exploitable

• 1) Adjust electrical parameters (supply/threshold voltages, high Vt devices, etc.)

– Critical area, but more of a circuits and tools issue

• 2) Reduce active switching through tools (clock gating of unnecessary logic)

• 3) Reduce powered-up transistors

– 5B transistors available

– How many can be powered up at any time?

– Answer depends on success at reducing leakage

– Needs to be a different set, otherwise why build the transistors?

• 4) More efficient computational models

• Note: not factoring in the effects of unreliable devices/redundant computation!
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Increasing Execution Efficiency

• Goal: reduce the energy consumed per operation
– But must not hamstring performance

– Example: eliminating prediction for branches

• Move work from the hardware to the compiler

– Example 1: Superscalar -> VLIW

– Example 2: Superscalar -> Explicit target architectures

• Microarchitectures that exploit less

– Loop reuse in TRIPS

• This area will need to be a major focus of research
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Example 1: Out-of-Order Overheads

• A day in the life of a RISC/CISC instruction

– ISA does not support out-of-order execution

– Fetch a small number of instructions

– Scan them for branches, predict

– Rename all of them, looking for dependences

– Load them into an associative issue window

– Issue them, hit large-ported register file

– Write them back on a large, wide bypass network

– Track lots of state for each instruction to support pipeline flushes

• BUT: performance from in-order architectures hurt badly by cache misses

– Unless working set fits precisely in the cache

– Take a bit hit in CPI, need that many more processors!
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TRIPS Approach to Execution Efficiency

• EDGE (Explicit Data Graph Execution) architectures have two 
key features
– Block-atomic execution

– Direct instruction communication

• Form large blocks of instructions with no internal control flow 
transfer

– We use hyperblocks with predication

– Control flow transfers (branches) only happen on block boundaries

• Form dataflow graphs of instructions, map directly to 2-D 
substrate

– Instructions communicate directly from ALU to ALU

– Registers only read/written at begin/end of blocks

– Static placement optimizations

• Co-locate communicating instructions on same or nearby ALU

• Place loads close to cache banks, etc.
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Architectural Structure of a TRIPS Block
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Block Compilation
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Block Mapping
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TRIPS Block Flow

– Compiler partitions program into “mini-graphs”

– Within each graph, instructions directly target others

– These mini-graphs execute like highly complex instructions

– Reduce per-instruction overheads, amortized over a block
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Floorplan of First-cut Prototype
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TRIPS/Alpha Activity Comparison
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Example 2: Loop Reuse

• Simple microarchitectural extension: loop reuse

• If block that has been mapped to a set of reservation stations is the same as 

the next one to be executed, just refresh the valid bits

– Signal can be piggybacked on block commit signal

– Re-inject block inputs to re-run the block

• Implication for loops: fetch/decode eliminated while in the loop

– Further gain in energy efficiency

• Loop must fit into the processor issue window

– How to scale up the issue window for different loops?
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Multigranular “Elastic” Threads
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• Problems with TRIPS microarchitecture

– Limited register/memory bandwidth

– Number of tiles per core is fixed at design time

– Multithreading is a hack to vary granularity

• Achievable by distributing all support tiles

– Assume each tile can hold >= 1 block (128 insts.)

• Solutions being implemented to design challenges

– Scalable cache capacity with number of tiles

– Scalable memory bandwidth (at the processor interface)

• Does not address chip-level memory bandwidth

� Config three: 6 threads, 1 thread on 8 tiles, 1 thread 

on 4 tiles, 4 threads on 1 tile each

� Config two: 2 threads, 1 block @ 128 insts/tile

� Config one: 1 thread, 16 blocks @ 8 insts/tile

T1
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Multigranular “Elastic” Threads
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Multigranular “Elastic” Threads
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Looking forward

3-D integrated memory

(stacked DRAM, MRAM, optical I/O)

• 2012-era EDGE CMP

– 8GHz at reasonable clock rate

– 2 TFlops peak

– 256 PEs

– 32K instruction window

• Flexible mapping of threads to Pes

– 256 small processors

– Or, small number of large processors

– Embedded network

• Need high-speed BW

• Ongoing analysis

– What will be power dissipation?

– How well does this design compare to 
fixed-granularity CMPs?

– Can we exploit direct core-to-core 
communication without killing the 
programmer?

Map thread to PEs based on granularity,

power, or cache working set
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Conclusions

• Potential for 2-3 orders of magnitude more performance from CMOS

• Significant uncertainties remain

– How well will the devices scale?

– What are application needs, how many different designs will they support?

• Concurrency will be key

• Must use existing silicon much more efficiently

– How many significant changes will the installed base support?

– New ISAs?  New parallel programming models?

• Architecture community can use guidance on these questions
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