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Climate-Change Science
Grand Challenge

Predict future climates based on
scenarios of anthropogenic emissions
and other changes resulting from
options in energy policies
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Climate change
and its manifestation
in terms of weather
(climate extremes)
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Global Heat Flows
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Energy Balance: Fundamental Driver of the
Scientific Problem

Longwave and Shortwave Energy Budget Northward Energy Transport
ERBE Absorbed Solar and Outgoing Longwave Fluxes Mean Annual Transport: CCM3
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Three Cell Atmospheric General Circulation

Source: Washington
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Cold saline
deep current
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Example of Global Climate Model
Simulation

Precipitable Water (gray scale) and Precipitation Rate
(orange )
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Animation courtesy f NCAR SCD Visualization and Enabling Technologies Section
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Change in Forcing 2000 vs 1750
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Observed Temperature Records

(b) the past 1,000 years
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Observations:

20" Century Warming

Model Solutions with Human Forcing

Gllobal Average Temp?rature
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The carbon cycle is the next

challenge
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“The results are as uncertain as
they are disconcerting”

a

2000 I (A pLEY CENTRE MODEL
1000 [
Jorge L. Sarmiento and )
Nicolas Gruber, “Sinks for &
Anthropogenic Carbon,” 2 o
Physics Today, August o
2002 £ 1920 1960 2000 2040 2080
£ 2000
E [ INSTITUT PIERRE SIMON LAPLACE MODEL
=]
5 &
A
Emissi @“’“’Qﬁa
SITUSSIONS L%
1000 |- »
e
0
Off f 1 1 1 1 1 1 1 1
.g Z] Sc:gfrcoe 1920 1960 2000 2040 2080

MERG Y

Year




Impacts of Climate Chanae
Observed Change 1950-1997

Snowpack Temperature
b. temperature, 1950 to 1997

a. Observations
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Under-resolved Processes

Synoptic-scale mechanisms and clouds
* extratropical storms « hutricanes
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- Errors and
blases:
North
Atlantic
Current
does not
reach

NW corner
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Source: Maltrud and
McClean, 2004
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S5H Variability (run 42L_pbc, 1998-2000)
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The Development of Climate models, Past, Present and Future

Wid-1970s Mid-1280s Eariy 19903 Late 1990s Early 2000s7
Almosphers Almasphera
Land surface
Eu[pﬂmta
/ / i
QOecean & soasice
model

Source: IPCC 2001
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A sample budget for computing needs
for CCSM4

Process Number Cost
Chemistry 924 400 — 500% (CAM)
Atmos. Res.—»1° X5
Ocean BGC 25 250 — 375% (POP)
Land BGC 40 <20% (CLM)
Total 159 > 20 — 25x%x

= Chem x Res.

The IPCC AR4 Required the Eguivalent of a "Cheetah-year (4.5 TFLOP
IBM SP) =2 in five years need ~100 TFLOP Dedicated Machine for 1
Mode/
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Unrepresented Processes:Atmospheric Aerosol
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A massive sandstorm blowing off the 1

northwest African desert has blanketed i
hundreds of thousands of square miles of the

eastern Atlantic Ocean with a dense cloud I

y' of Saharan sand. The massive nature of this [

I
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particular storm was first seen in this SeaWiFS
image acquired on Saturday, 26 February 2000
when it reached over 1000 miles into the Atlantic.
These storms and the rising warm air can lift dust
15,000 feet or so above the African deserts and then
out across the Atlantic, many times reaching as far as
the Caribbean where they often require the local weather
services to issue air pollution alerts as was recently
the case in San Juan, Puerto Rico. Recent studies by Ihe =
U.5.G.S.(http://catbert.er.usgs.gov/african_dust/)
have linked the decline of the coral reefs in the Caribbean |
to the increasing frequency and intensity of Saharan Dust £
events. Additionally, other studies suggest that Sahalian
Dust may play a role in determining the frequency and
intensity of hurricanes formed in the eastern Atlantic Ocean ||
'www.thirdworld.org/role.html) I
1) FS PruLecl NASA GSFC and ORBIMAGE
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EBIS - Whole-system '“C flux and storage characterization

Canopy Litter + i
Throughfall Total Soil Respiration (Rgoil) Soil C Pool
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Parameterization is Scale Selective

Moist Convection Example
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ot dp || dp
we resolve the and parameterize the
“large scale” unresolved scales

What happens to the “large-scale” motions seen by the
parameterlzed phy5|cs as resolution is changed?
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Atmospheric Motion Scales and
Parameterization
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T42(2000) vs T170(2005)

Better Simulation of Tropical Cyclone Impacts on Climate
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Process Models and

Deep
Convective
Clouds

Medium
Convective
Clouds

Shallow
Convective
Clouds
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Time for more comprehensive
exploration of “spectral gap?”

-ultra-high resolution simulations (~107x)

*super-parameterization (MMF) approach
(~200x-500x)




Horizontal discretization
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Spectral

Lat-lon
Pluses Minuses
Lat-lon Pole problem
Spectral No pole Gibbs
problem phenomenon
.| Homogeneous,
SERCRRCHIE isotropic grid
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GFDL Spectral->Lat-lon
NCAR Spectral (-> Lat-lon?)
GISsS Lat-lon
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MPI Spectral -> Geodesic
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The World’s First Global Cloud-Resolving Model

@& Ocean-covered Earth
® 3.5 km cell size, ~107

@1 TF-year per
simulated year

columns
@ 54 layers, ~10° total cells
® State ~1 1B

@ Top at 40 km
@ 15-second time step

@ Spun up with coarser
resolution
@ 10 days of simulation
® ~10 simulated days per W Bl e JEe S s ]
day on half of the Earth e W
Simulator (2560 CPUs,
320 nodes), close to 10
real TF.
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Computing Needs and Realities

« Throughput required ~5 years/day for ensemble simulation (century/month)
* Long integration times/ensembles required for climate

— non-deterministic problem with large natural variability

— long equilibrium time scales for coupled systems

— computational capability Oth-order rate limiter
« Quality of solutions are resolution and physics limited

— balance horizontal and vertical resolution, and physics complexity

— computational capability Oth-order rate limiter

Issue Motivation Compute Factor
Spatial resolution Provide regional details 10°-10° Ref: A SCIENCE-
Model completeness Add “new” science Kiz BASED CASE

_ , FOR LARGE-
New parameterizations Upgrade to “better” science 107 SCALE
Run length Long-term implications 0a SIMULATION
Ensembles, scenarios Range of model variability 1) Volume 2
Total Compute Factor 10'%10"
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We Need Scalability, Balance, and a Stable
Programming Model!!!

Federal Plan
for High-End

Subcommittee on Global Change Research
Committee on Environment and Natural Resources

Computing

e '\-"-. i

HIGH-END CLIMATE SCIENCE:
DEVELOPMENT OF MODELING AND RELATED
COMPUTING CAPABILITIES

A report to the USGCRP from the
ad hoc Working Group on Climate Modeling

USGCRP

Report of the Soe ;
nd Computing ‘
on Task Force
(HECRTF)

.
L ~
-
*
-

IMPROVING THE
EFFECTIVENESS OF

U'S. CLIMATE MODELING o mnTE

TO SUPPORT CUMATE CHANGE ASSESSMENT ACTIVITIES
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The Computational Efficiency
Challenge

» Heterogeneous collection of irregular algorithms
— diverse collection of algorithms (physical/dynamical/chemical
processes)
« Relatively low-resolution configurations
— severely limits scalability; parallelism grows slower than op count

« Use of non-local techniques

— employed for numerical efficiency, inherently communication
Intensive

* Need for long integration periods
— physical time scales decades to centuries

» Efficient implementations for volatile computational environments

— immature development and production environments
— sub-optimally balanced hardware infrastructure
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Scalability and Amdahl’s Law

Parallel Efficiency vs Processor Count

Keete

1 - 32 Processor System

Ref: NRC, 2001
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HECRTF Report Appendix D:
DISCUSSION ON SYSTEM SPECIFICATIONS
AND APPLICATION REQUIREMENTS

« Scalable MPP and cluster systems, while providing
massive amounts of memory, are inherently more
difficult to program.

 Numerous attempts are currently under way to retool
codes in application areas such as ... global climate
modeling, ... to run more efficiently on MPP
architectures, simply because they are the most plentiful
systems currently available...

« ....while they have resulted in more scalable codes in the
short run, have diverted attention away from the
development of systems that provide high-bandwidth

access to extremel;l arge global me<mor|es
s PCMDI
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Summary: Global Climate Modeling

— complex and evolving scientific problem
 climate science is not a solved problem!

— parameterization of physical processes is pacing

progress
* this is not necessarily a well posed problem

— observational limitations are pacing process

understanding
» this has ALWAYS been an important rate-limiting component

— computational limitations pacing exploration of model

formulations

» explorations of resolution parameter space, process modeling, system
sensitivities, model validation (e.g., reproduce paleo record)
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