
Extreme Computing 2005Center for Nano Science and Technology

University of Notre Dame

Craig S. Lent

University of Notre Dame

Molecular QCA and the limits of 

binary switching logic

Supported by NSF, State of Indiana

Collaborators: Peter Kogge, Mike Niemier, Greg Snider, Patrick Fay, 

Marya Lieberman, Thomas Fehlner, Alex Kandel



Extreme Computing 2005Center for Nano Science and Technology

University of Notre Dame

The Dream of Molecular Transistors

Why don’t we keep on shrinking transistors until they 
are each a single molecule?
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Molecular Transistors

Where’s the 

benefit of 

small?

Where do 

you put the 

next device?



Extreme Computing 2005Center for Nano Science and Technology

University of Notre Dame

Dream molecular transistors
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low conductance 
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1 nm

fmax=1 THz

Molecular densities: 1nm x 1nm � 1014/cm2
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Transistors at molecular densities

Suppose in each clock cycle a single electron 

moves from power supply (1V) to ground.

V
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Transistors at molecular densities

Suppose in each clock cycle a single electron 

moves from power supply (1V) to ground.
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ITRS roadmap: 

7nm gate length, 109 logic transistors/cm2 @ 3x1010 Hz for 2016
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Transistors at molecular densities
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The Dream of Molecular Transistors
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Molecular electronics requirements

1) Low power dissipation

2) Real power gain

3) Robustness to disorder

Benefit: functional densities at molecular scale
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Outline

• Introduction

• QCA paradigm

• Implementations

– Metal-dot QCA

– Molecular QCA

• Energy flow in QCA

– Power gain

– Power dissipation and erasure

– Bennett clocking
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Quantum-dot cellular automata

Represent binary 

information by charge 

configuration of cell.

“0”

“null”

“1”
QCA cell

• Dots localize charge

• Two mobile charges

• Tunneling between dots

• Clock signal varies relative

energies of “active” and “null” dots

active

Clock need not separately contact each cell.
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“null”

Quantum-dot cellular automata

Neighboring cells tend to 

align in the same state.

“1”
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Quantum-dot cellular automata

Neighboring cells tend to 

align in the same state.

“1” “1”
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Quantum-dot cellular automata

Neighboring cells tend to 

align in the same state.

“1” “1”

This is the COPY operation.
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Majority Gate

“1”

“1”

“0”

“null”
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Majority Gate

“1”

“1”

“0”

“1”



Extreme Computing 2005Center for Nano Science and Technology

University of Notre Dame

Majority Gate

Three input majority gate can function as programmable 2-input 

AND/OR gate.

“A”

“C”

“B”

“out”

M
A

B

C
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Inverter Gate

“1”
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Inverter Gate

“1” “0”
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Inverter Gate

“1”
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Inverter Gate

“0”
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Inverter Gate

“0” “1”
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QCA single-bit full adder

Hierarchical layout and design are possible.

result of SC-HF calculation  

with site model 



Extreme Computing 2005Center for Nano Science and Technology

University of Notre Dame

Adiabatic computing 

(Landauer)

“null”

“0”

0

0
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Characteristic energy

E=0

kink

E=Ek

We would like “kink energy” Ek > kBT. 

e
n
e
rg
y
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Molecular Wire

ONIOM/STO-3G (Gaussian 03)

aligned

error

E
n
e
rg
y

Ek = 0.8 eV
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Outline

• Introduction

• QCA paradigm

• Implementations

– Metal-dot QCA

– Molecular QCA

• Energy flow in QCA

– Power gain

– Power dissipation and erasure

– Bennett clocking
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QCA devices exist

“dot” = metal island

electrometers

70 mK

Al/AlOx on 

SiO2

Metal-dot QCA implementation

Greg Snider, Alexei Orlov, and Gary Bernstein
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Metal-dot QCA cells and devices

• Majority Gate

M
A
B
C

Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, 
Science 284, pp. 289-291 (1999).
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QCA Shift Register

Gtop

Gbot
electrometers

V
IN
+

V
IN
–

V
CLK1 V

CLK2

D1 D4
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QCA Shift Register
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Metal-dot QCA devices exist

• Single electron analogue of molecular QCA

• Gates and circuits:

– Wires

– Shift registers

– Fan-out

– Power gain demonstrated

– AND, OR, Majority gates

• Work underway to raise operating temperatures
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From metal-dot to molecular QCA

“dot” = metal island
70 mK

Mixed valence compounds

“dot” = redox center

room temperature+

Metal tunnel junctions

Key strategy: use nonbonding orbitals (π or d) to act as dots.
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4-dot molecule

Each ferrocene acts as a quantum dot, the Co group connects 4 dots.

Fehlner et al
(Notre Dame chemistry group)
Journal of American Chemical Society

125:7522, 2003
5.8 Å
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Bistable configurations

“0” “1”

Guassian-98 UHF/STO-3G/LANL2DZFehlner et al
(Notre Dame chemistry group)
Journal of American Chemical Society

125:7522, 2003
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Switching molecule by a neighboring molecule

Coulomb interaction is sufficient to couple molecular states.
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Molecular 3-dot cell

For the molecular cation, a hole occupies one of three dots.

cation
neutral 

radical

+

neutral 

radical

+

Three allyl groups form 

“dots” on alkyl bridge.
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Charge configuration represents bit

isopotential

surfaces

“1”“null”

+

“0”
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Clocking field

“1”

“0”

null

E

E

E

or

Use local electric field to switch molecule between active and null states.

active

“null”
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µdriver (eÅ)

µ
m
ol
ec
u
le
 (
eÅ
)

“null”

Clocking field alters response 

function

µ
m
ol
ec
u
le
 (
eÅ
)

µdriver (eÅ)

“1”

“0”

E

• Clocking field positive (or zero)

• Positive charge in top dots

• Cell is active – nonlinear 

response to input

• Clocking field negative

• Positive charge in bottom dot

• Cell is inactive – no response 

to input
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Clocked Molecular QCA

No current leads. No need to contact 

individual molecules.

Active Domain

Null Domain

Switching Region
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Molecular clocking

Clocking field is provided by buried wire electrodes (CMOS 
controlled).

Wire sizes can be 10-100 times larger than molecules.

Hennessey and Lent, JVST (2001)

QCA 
layer

lockednullactive
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Clocking field: linear motion 
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Molecular circuits and clocking wires

Plan view of buried 

clocking wires

region where perpendicular field is 

high pushing cells into active state
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Molecular circuits and clocking wires

molecular circuits are on a much 

smaller length scale (10 –100x)
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Molecular circuits and clocking wires

First: zoom in to molecular level
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Field-clocking of QCA wire: 

shift-register
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Computational wave: majority gate
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Computational wave: adder back-end
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XOR Gate
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Permuter
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Wider QCA wires

Internal redundancy yields defect tolerance.
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Molecular circuits and clocking wires

Next: zoom out to dataflow level
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Universal floorplan

Kogge & Niemier
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Outline

• Introduction

• QCA paradigm

• Implementations

– Metal-dot QCA

– Molecular QCA

• Energy flow in QCA

– Power gain

– Power dissipation and erasure

– Bennett clocking



Extreme Computing 2005Center for Nano Science and Technology

University of Notre Dame

Power Gain in QCA Cells

• Power gain is crucial for practical devices 

because some energy is always lost between 

stages.

• Lost energy must be replaced.

– Conventional devices – current from power supply

– QCA devices – from the clock

• Unity power gain means replacing exactly as 

much energy as is lost to environment.

Power gain > 3 has been measured in metal-dot QCA.
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• Maxwell’s demon (1875) – by first measuring states, could 
perform reversible processes to lower entropy

• Szilard (1929), Brillouin (1962): measurement causes
kBT log(2) dissipation per bit.

• Landauer (1961,1970): only erasure of information must cause 
dissipation of kBT log(2) per bit.

• Bennett (1982): full computation can be done without erasure.

logical reversibility    � physical reversibility

Minimum energy for computation
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Theoretical description
Coherence vector formalism

Extract the real degrees of 

freedom from the density matrix ˆˆ( )i iTrλ λ= ρ

real vector λ
r

2ˆ  are the 1 generators of SU(n), n=2,3i nλ −

system

environment

ssd

dt
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Computational wave: adder back-end
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The computational 

wave

Computation happens here.

Dissipation (if any) happens here.
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Landauer clocking of QCA
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Bennett-style circuit reversibility

E
n
e
rg
y
/E
k

kBT log(2)

reversibleirreversible

Direct time-dependent calculations shows: Logically 

reversible circuit can dissipate much less than kBT log(2). 
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“Bennett clocking” of QCA

Output is used to erase intermediate results.
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Bennett clocking of QCA

For QCA no change in layout is required.
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QCA gate: reversible/irreversible

Direct time-dependent calculations shows: Bennett-

clocked circuit can dissipate much less than kBT log(2). 
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Power dissipation limits

• QCA can operate at the theoretical limits of low 
power dissipation.

• For regular clocking: must dissipate kBT log(2) for 
each erased bit.

• For Bennett-clocking: no fundamental lower limit.
Cost: half clock speed, more complicated clocking.

• Makes extreme high densities possible—clocking 
type is in design space.
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Doesn’t adiabatic mean slow?

Slow compared to what?

– For conventional circuits, ω < RC

– For molecular QCA, slow compared to electron switching 

from one side of a molecule to the other

f < fB ~ 10 15 Hz  → THz operation is feasible
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QCA Power Dissipation

QCA architectures could operate at densities 1012 devices/cm2 and 

100GHz without melting the chip.

QCA Operation Region

100 W/cm2

@1012 devices/cm2
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Outline

• Introduction

• QCA paradigm

• Implementations

– Metal-dot QCA

– Molecular QCA

• Energy flow in QCA

– Power gain

– Power dissipation and erasure

– Bennett clocking
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Is Zettaflops computing possible?

Minimum device size: 1 nm x 1 nm

� 1014 devices/cm2

Maximum switching speed: 1015 Hz

Total chip area: 10 cm x 10 cm

Maximum devices that could be switching

= 1014 x 1015 x 102 = 1031 switches/sec
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Is Zettaflops computing possible?

Downgrade density

1014 � 1012 devices/cm2   

Downgrade speed

1015 Hz � 1012 Hz

Total chip area: 10 cm x 10 cm

Gate op/flop 105

� 1012 x 1012 x 102 x 10-5 = 1021 FLOPS

Possible…. but challenging
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Main Points
• Quantum-dot Cellular Automata (QCA) is transistor-less approach 

for solving the challenges of

– Scaling devices to molecular dimensions

– Avoiding huge power dissipation issues

– Power gain (lacking in crossbars)

– Robustness against disorder

• QCA is an example of operating at the ultimate limits of low power 
dissipation.

• Direct calculation of the time evolution of QCA arrays illustrates the 
Landauer Principle. (no hand-waving required)

• QCA can be operated in a Bennett-clocking mode. 

• Zettaflops operation is conceivable

Thank you for your attention
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