Molecular QCA and the limits of binary switching logic

Craig S. Lent University of Notre Dame

Collaborators: Peter Kogge, Mike Niemier, Greg Snider, Patrick Fay, Marya Lieberman, Thomas Fehlner, Alex Kandel

Supported by NSF, State of Indiana

Center for Nano Science and Technology University of Notre Dame

The Dream of Molecular Transistors

Why don't we keep on shrinking transistors until they are each a single molecule?

Center for Nano Science and Technology University of Notre Dame

Molecular Transistors

Center for Nano Science and Technology University of Notre Dame

Dream molecular transistors

Molecular densities: $1nm \times 1nm \rightarrow 10^{14}/cm^2$

Transistors at molecular densities

Suppose in each clock cycle a *single* electron moves from power supply (1V) to ground.

Transistors at molecular densities

Suppose in each clock cycle a *single* electron moves from power supply (1V) to ground.

Power dissipation (Watts/cm²)

Frequency (Hz)	10 ¹⁴ devices/cm ²	10 ¹³ devices/cm ²	10 ¹² devices/cm ²	10 ¹¹ devices/cm ²
10 ¹²	16,000,000	1,600,000	160,000	16,000
10 ¹¹	1,600,000	160,000	16,000	1,600
10 ¹⁰	160,000	16,000	1,600	160
10 ⁹	16,000	1600	160	16
10 ⁸	1600	160	16	1.6
10 ⁷	160	16	1.6	0.16
10 ⁶	16	1.6	0.16	0.016

ITRS roadmap:

7nm gate length, 10⁹ logic transistors/cm² @ 3x10¹⁰ Hz for 2016

Transistors at molecular densities

Suppose in each clock cycle a *single* electron moves from power supply (1V) to ground.

Power dissipation (Watts/cm²)

Frequency (Hz)	10 ¹⁴ devices/cm ²	10 ¹³ devices/cm ²	10 ¹² devices/cm ²	10 ¹¹ devices/cm ²
10 ¹²	16,000,000	1,600,000	160,000	16,000
1011	1,600,000	160,000 (16,000	1,600
10 ¹⁰	160,000	16,000	1,600	160
10 ⁹	16,000	1600	160	16
10 ⁸	1600	160	16	1.6
10 ⁷	160	16	1.6	0.16
10 ⁶	16	1.6	0.16	0.016

ITRS roadmap:

7nm gate length, 10⁹ logic transistors/cm² @ 3x10¹⁰ Hz for 2016

The Dream of Molecular Transistors

Center for Nano Science and Technology University of Notre Dame

Molecular electronics requirements

1) Low power dissipation

2) Real power gain

3) Robustness to disorder

Benefit: functional densities at molecular scale

Outline

- Introduction
- QCA paradigm
- Implementations
 - Metal-dot QCA
 - Molecular QCA
- Energy flow in QCA
 - Power gain
 - Power dissipation and erasure
 - Bennett clocking

"1"

Represent binary information by charge configuration of cell.

QCA cell

- Dots localize charge
- Two mobile charges
- Tunneling between dots
- Clock signal varies relative energies of "active" and "null" dots

active

"null"

Clock need not separately contact each cell.

Center for Nano Science and Technology University of Notre Dame

Neighboring cells tend to align in the same state.

Center for Nano Science and Technology University of Notre Dame

Neighboring cells tend to align in the same state.

Neighboring cells tend to align in the same state.

This is the COPY operation.

Center for Nano Science and Technology University of Notre Dame

Three input majority gate can function as programmable 2-input AND/OR gate.

Center for Nano Science and Technology University of Notre Dame

QCA single-bit full adder

Hierarchical layout and design are possible.

"0"

Center for Nano Science and Technology University of Notre Dame

Characteristic energy

We would like "kink energy" $E_k > k_B T$.

Center for Nano Science and Technology University of Notre Dame

Molecular Wire

Center for Nano Science and Technology University of Notre Dame

Outline

- Introduction
- QCA paradigm
- Implementations
 - Metal-dot QCA
 - Molecular QCA
- Energy flow in QCA
 - Power gain
 - Power dissipation and erasure
 - Bennett clocking

QCA devices exist

Metal-dot QCA implementation

"dot" = metal island

Greg Snider, Alexei Orlov, and Gary Bernstein

Center for Nano Science and Technology University of Notre Dame

Metal-dot QCA cells and devices

Center for Nano Science and Technology University of Notre Dame

QCA Shift Register

Center for Nano Science and Technology University of Notre Dame

QCA Shift Register

Schematic Diagram

SEM Micrograph

Center for Nano Science and Technology University of Notre Dame

Metal-dot QCA devices exist

- Single electron analogue of molecular QCA
- Gates and circuits:
 - Wires
 - Shift registers
 - Fan-out
 - Power gain demonstrated
 - AND, OR, Majority gates
- Work underway to raise operating temperatures

From metal-dot to molecular QCA

Metal tunnel junctions

"dot" = metal island 70 mK

"dot" = redox center

Mixed valence compounds

room temperature+

Key strategy: use *nonbonding* orbitals (π or d) to act as dots.

Center for Nano Science and Technology University of Notre Dame

4-dot molecule

Fehlner *et al* (Notre Dame chemistry group) *Journal of American Chemical Society* 125:7522, 2003

Each ferrocene acts as a quantum dot, the Co group connects 4 dots.

Center for Nano Science and Technology University of Notre Dame

Bistable configurations

``0''

Fehlner *et al* (Notre Dame chemistry group) *Journal of American Chemical Society* 125:7522, 2003

Guassian-98 UHF/STO-3G/LANL2D

Switching molecule by a neighboring molecule

Coulomb interaction is sufficient to couple molecular states.

Center for Nano Science and Technology University of Notre Dame
Molecular 3-dot cell

For the molecular cation, a hole occupies one of three dots.

Center for Nano Science and Technology University of Notre Dame

Charge configuration represents bit

Center for Nano Science and Technology University of Notre Dame

Use local electric field to switch molecule between active and null states.

Clocking field alters response function

- Positive charge in top dots
- Cell is active nonlinear response to input

- Clocking field negative
- Positive charge in bottom dot
- Cell is inactive no response to input

Clocked Molecular QCA

No current leads. No need to contact individual molecules.

Center for Nano Science and Technology University of Notre Dame

Molecular clocking

Wire sizes can be 10-100 times larger than molecules.

Clocking field: linear motion

Center for Nano Science and Technology University of Notre Dame

Center for Nano Science and Technology University of Notre Dame

Center for Nano Science and Technology University of Notre Dame

Center for Nano Science and Technology University of Notre Dame

Field-clocking of QCA wire: shift-register

Computational wave: majority gate

Computational wave: adder back-end

XOR Gate

Permuter

Wider QCA wires

Internal redundancy yields defect tolerance.

Center for Nano Science and Technology University of Notre Dame

Center for Nano Science and Technology University of Notre Dame

Universal floorplan

Center for Nano Science and Technology University of Notre Dame Kogge & Niemier

Outline

- Introduction
- QCA paradigm
- Implementations
 - Metal-dot QCA
 - Molecular QCA
- Energy flow in QCA
 - Power gain
 - Power dissipation and erasure
 - Bennett clocking

Power Gain in QCA Cells

- Power gain is crucial for practical devices because some energy is always lost between stages.
- Lost energy must be replaced.
 - Conventional devices current from power supply
 - QCA devices from the clock
- Unity power gain means replacing exactly as much energy as is lost to environment.

Power gain > 3 has been measured in metal-dot QCA.

Minimum energy for computation

- Maxwell's demon (1875) by first measuring states, could perform reversible processes to lower entropy
- Szilard (1929), Brillouin (1962): *measurement* causes $k_B T \log(2)$ dissipation per bit.
- Landauer (1961,1970): only *erasure* of information must cause dissipation of $k_B T \log(2)$ per bit.
- Bennett (1982): full computation can be done without erasure.

logical reversibility \Leftrightarrow physical reversibility

Theoretical description

Coherence vector formalism

Extract the real degrees of freedom from the density matrix

 $\hat{\lambda}_i$ are the $n^2 - 1$ generators of SU(n), n=2,3

Equation of motion

 $\vec{\lambda}_{ss} = tr(\mathbf{\rho}^{eq}\hat{\lambda}_{i})$

$$\mathbf{\Omega}_{ik} = \sum_{j} f_{ijk} \Gamma_{j}$$
$$\Gamma_{j} = \left(\frac{1}{\hbar}\right) tr(H\hat{\lambda}_{i})$$

 f_{ijk} : structure constants of SU(n)

Center for Nano Science and Technology University of Notre Dame

 $\boldsymbol{\rho}^{eq} = \frac{e^{-\beta H}}{tr(e^{-\beta H})}$

Computational wave: adder back-end

Center for Nano Science and Technology University of Notre Dame

Landauer clocking of QCA

Bennett-style circuit reversibility

Direct time-dependent calculations shows: Logically

reversible circuit can dissipate much less than $k_{\rm B}T \log(2)$.

Center for Nano Science and Technology University of Notre Dame

"Bennett clocking" of QCA

Output is used to erase intermediate results.

Center for Nano Science and Technology University of Notre Dame

Bennett clocking of QCA

For QCA no change in layout is required.

Center for Nano Science and Technology University of Notre Dame

QCA gate: reversible/irreversible

Direct time-dependent calculations shows: Bennettclocked circuit can dissipate much less than $k_BT \log(2)$.

Center for Nano Science and Technology University of Notre Dame

Power dissipation limits

- QCA can operate at the theoretical limits of low power dissipation.
- For regular clocking: must dissipate k_BT log(2) for each erased bit.
- For Bennett-clocking: no fundamental lower limit. Cost: half clock speed, more complicated clocking.
- Makes extreme high densities possible—clocking type is in design space.

Doesn't adiabatic mean slow?

Slow compared to what?

- For conventional circuits, ω < RC

 For molecular QCA, slow compared to electron switching from one side of a molecule to the other

 $f < f_B \sim$ 10 15 Hz $~\rightarrow~$ THz operation is feasible

QCA Power Dissipation

QCA architectures could operate at densities 10¹² devices/cm² and 100GHz without melting the chip.

Outline

- Introduction
- QCA paradigm
- Implementations
 - Metal-dot QCA
 - Molecular QCA
- Energy flow in QCA
 - Power gain
 - Power dissipation and erasure
 - Bennett clocking

Is Zettaflops computing possible?

Minimum device size: 1 nm x 1 nm
→ 10¹⁴ devices/cm²
Maximum switching speed: 10¹⁵ Hz
Total chip area: 10 cm x 10 cm

Maximum devices that could be switching = $10^{14} \times 10^{15} \times 10^2 = 10^{31}$ switches/sec

Is Zettaflops computing possible?

Downgrade density $10^{14} \rightarrow 10^{12}$ devices/cm² Downgrade speed 10^{15} Hz $\rightarrow 10^{12}$ Hz Total chip area: 10 cm x 10 cm Gate op/flop 10⁵

→ 10¹² x 10¹² x 10² x 10⁻⁵ = 10²¹ FLOPS

Possible.... but challenging

Main Points

- Quantum-dot Cellular Automata (QCA) is transistor-less approach for solving the challenges of
 - Scaling devices to molecular dimensions
 - Avoiding huge power dissipation issues
 - Power gain (lacking in crossbars)
 - Robustness against disorder
- QCA is an example of operating at the ultimate limits of low power dissipation.
- Direct calculation of the time evolution of QCA arrays illustrates the Landauer Principle. (no hand-waving required)
- QCA can be operated in a Bennett-clocking mode.
- Zettaflops operation is *conceivable*

Thank you for your attention