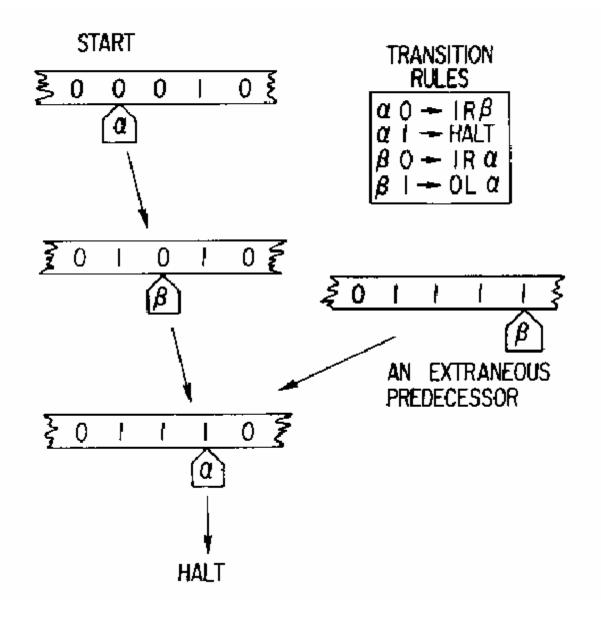
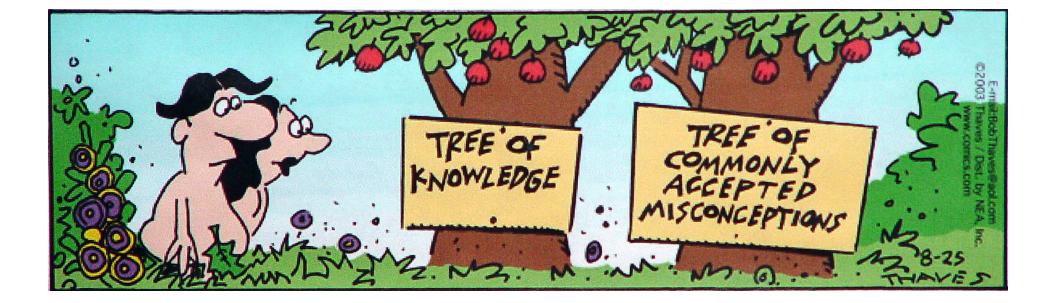
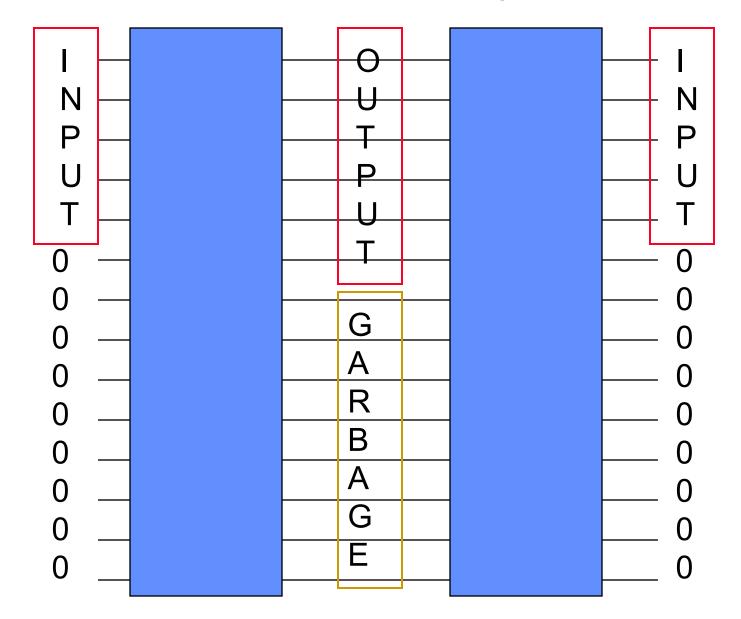
Turing machine, illustrating logical irreversibility

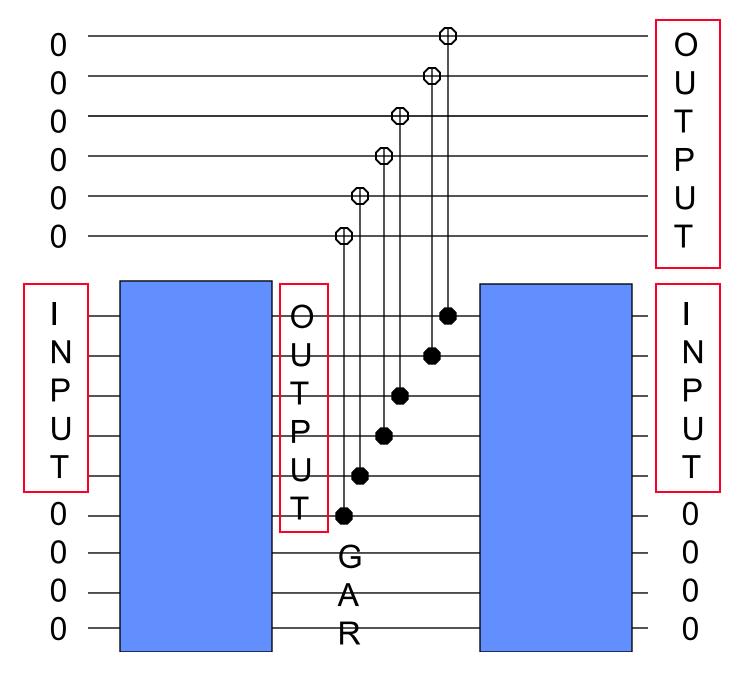




Time-Efficient Space-Inefficient reversible simulation of an irreversible computation



Using CNOTs to copy output before undoing computation



Another view of the Time-efficient, space-inefficient simulation

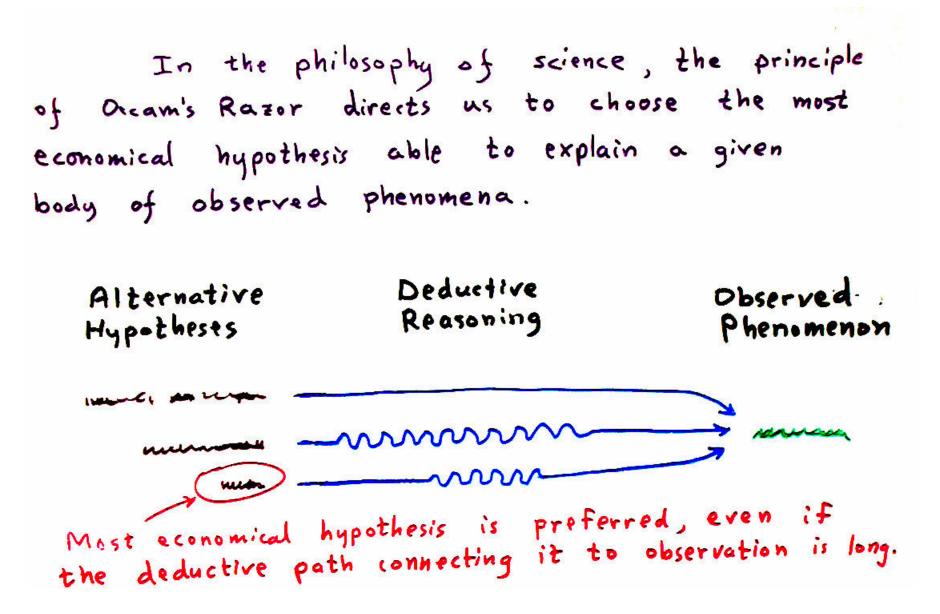
T steps of irreversible computation are simulated in 2T steps of reversible computation, using O(T) extra memory for temporary storage of intermediate results.

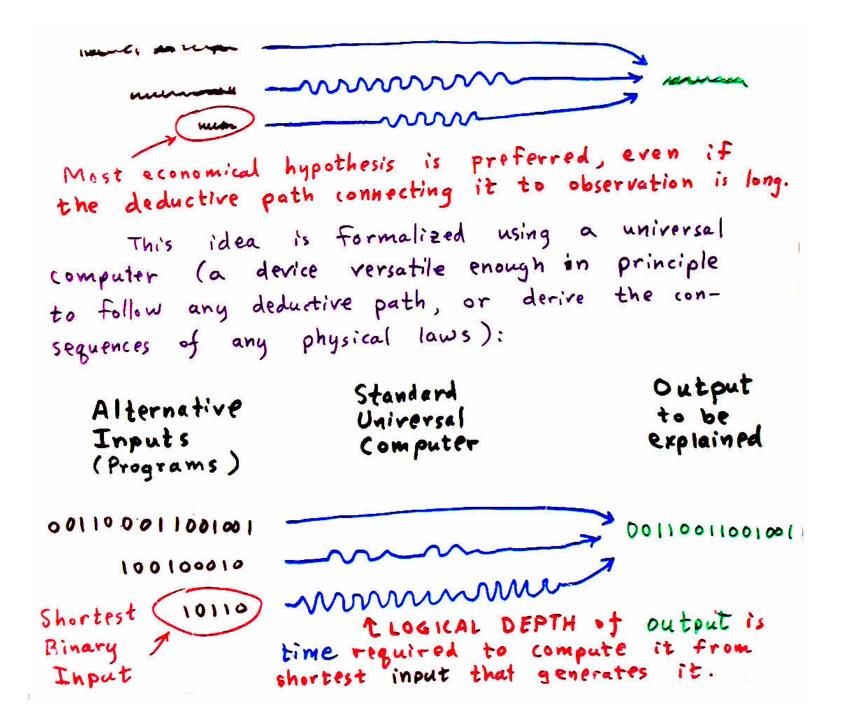
Like laying down a row of stepping stones to cross a river, then removing them. A stepping stone may be placed or removed only when its predecessor is present.

Trading time for space: By doing and undoing steps in a hierarchical manner, $T=2^m$ steps of irreversible computation can be simulated in 3^m reversible steps using O(m) temporary intermediate storage.

More generally, this type of argument shows that for all $\varepsilon > 0$, an irreversible computation using time T and space S can be reversibly simulated in time $\propto T^{1+\varepsilon}$ and space $\propto S \log T$. A still more space-efficient simulation runs in exponential time and linear space.

Occam's Razor & the notion of Logical Depth





What did "Information is Physical" mean to Landauer?

1. We ought to think more about physical principles like the 2nd law when we are developing a theory of information processing.

2. It is a waste of time for mathematicians to think about things like the $2^{1,000,000th}$ digit of pi, which have no chance of being calculated in the physical universe.

But what about the $2^{1,000,000th}$ digit of 1/7?