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Why Graphs?

Discrete Algorithms & Math Department

e Exemplar of memory-intensive application

e Widely applicable and can be very large scale

» Scientific computing
— sparse direct solvers
— preconditioning
— radiation transport
— mesh generation
— computational biology, etc.
» Informatics
— data-centric computing
— encode entities & relationships
— look for patterns or subgraphs
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Characteristics

Discrete Algorithms & Math Department

e Data patterns

» Moderately structured for scientific applications
— Even unstructured grids make “nice” graphs
— Good partitions, lots of locality on multiple scales
» Highly unstructured for informatics
— Similar to random, power-law networks
— Can’t be effectively partitioned

e Algorithm characteristics

» Typically, follow links of edges
— Maybe many at once — high level of concurrency
— Highly memory intensive
» Random accesses to global memory — small fetches

» Next access depends on current one
o Minimal computation
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Shortest Path Illustration
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Architectural Challenges

Discrete Algorithms & Math Department

e Runtime is dominated by latency
e Essential no computation to hide memory costs

e Access pattern is data dependent
» Prefetching unlikely to help
» Often only want small part of cache line

e Potentially abysmal locality at all levels of
memory hierarchy
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Caching Futility

Block Size vs. Miss Rate

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

T ML L

= = SPEC Mean

=== Chaco (Ocean)

=== Metis (Ocean)
DFS

=== Shortest Path

Isomorphism

=1
L]
Ol
..-
-
il B QR —
1

Block Size vs. Miss Rate

1
|

= = QDENMN NMAAn

Extreme Computing’05



Larger Blocks are Expensive

Discrete Algorithms & Math Department

» Block Size vs. Bandwidth
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Properties Needed for Good
Graph Performance

Discrete Algorithms & Math Department

e Low latency / high bandwidth

» For small messages!
e Latency tolerant
e Light-weight synchronization mechanisms

e Global address space
» No graph partitioning required
» Avoid memory-consuming profusion of ghost-nodes

e These describe Burton Smith’s MTA!
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MTA Introduction

Discrete Algorithms & Math Department

Latency tolerance via massive multi-threading
» Each processor has hardware support for 128 threads
» Context switch in a single tick
» Global address space, hashed to reduce hot-spots
» No cache. Context switch on memory request.
» Multiple outstanding loads

Good match for applications which: e
» Exhibit complex memory access patterns
» Aren’t computationally intensive (slow clock)
» Have lots of fine-grained parallelism

Programming model
» Serial code with parallelization directives
» Code is cleaner than MPI, but quite subtle
» Support for “future” based parallelism
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Case Studz — Shortest Path
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e Compare codes optimized for different architectures

e Option 1: Distributed Memory CompNets
» Run on Linux cluster: 3GHz Xenons, Myrinet network
» LLNL/SNL collaboration — just for short path finding
» Finalist for Gordon Bell Prize on BlueGene/L
» About 1100 lines of C code

e Option 2: MTA parallelization

» Part of general-purpose graph infrastructure
» About 400 lines of C++ code
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Short Paths on Erdos-Renyi

Random Graphs (V=32M, E=128M)

Discrete Algorithms & Math Department

S-T Connectivity: MTA-2 vs. Cluster
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Connected Components on MTA-2
Power-Law Graph V=34M, E=235M

Discrete Algorithms & Math Department —

Connected Components Scaling: Power Law Graph
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Remarks

Discrete Algorithms & Math Department

e Single processor MTA competitive with
current micros, despite 10x clock difference

e Excellent parallel scalability for MTA on
range of graph problems

» ldentical to single processor code

e Eldorado is coming next year
» Hybrid of MTA & Red Storm
» Less well balanced, but affordable
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Broader Lessons

Discrete Algorithms & Math Department

e Space of important apps is broader than PDE solvers

» Data-centric applications may be quite different from
traditional scientific simulations

e Architectural diversity is important
» No single architecture can do everything well

e As memory wall gets steeper, latency tolerance will
be essential for more and more applications

e High level of concurrency requires
» Latency tolerance
» Fine-grained synchronization
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