
Extreme Computing’05

Parallel Graph Algorithms:
Architectural Demands of

Pathological Applications

Bruce Hendrickson

Jonathan Berry

Keith Underwood

Sandia National Labs

Richard Murphy

Notre Dame University

Extreme Computing’05

Confessions of a

Message-Passing Snob

Bruce Hendrickson

Sandia National Labs

Discrete Algorithms & Math Department

Extreme Computing’05

Why Graphs?

� Exemplar of memory-intensive application

� Widely applicable and can be very large scale
» Scientific computing

– sparse direct solvers

– preconditioning

– radiation transport

– mesh generation

– computational biology, etc.

» Informatics

– data-centric computing

– encode entities & relationships

– look for patterns or subgraphs

Discrete Algorithms & Math Department

Extreme Computing’05

Characteristics

� Data patterns
» Moderately structured for scientific applications

– Even unstructured grids make “nice” graphs

– Good partitions, lots of locality on multiple scales

» Highly unstructured for informatics
– Similar to random, power-law networks

– Can’t be effectively partitioned

� Algorithm characteristics
» Typically, follow links of edges

– Maybe many at once – high level of concurrency

– Highly memory intensive
� Random accesses to global memory – small fetches

� Next access depends on current one

� Minimal computation

Discrete Algorithms & Math Department

Extreme Computing’05

Shortest Path Illustration

Discrete Algorithms & Math Department

Extreme Computing’05

Architectural Challenges

� Runtime is dominated by latency

� Essential no computation to hide memory costs

� Access pattern is data dependent

» Prefetching unlikely to help

» Often only want small part of cache line

� Potentially abysmal locality at all levels of

memory hierarchy

Discrete Algorithms & Math Department

Extreme Computing’05

Caching Futility

Discrete Algorithms & Math Department

Extreme Computing’05

Larger Blocks are Expensive

Discrete Algorithms & Math Department

Extreme Computing’05

Properties Needed for Good
Graph Performance

� Low latency / high bandwidth
» For small messages!

� Latency tolerant

� Light-weight synchronization mechanisms

� Global address space
» No graph partitioning required

» Avoid memory-consuming profusion of ghost-nodes

� These describe Burton Smith’s MTA!

Discrete Algorithms & Math Department

Extreme Computing’05

MTA Introduction

� Latency tolerance via massive multi-threading
» Each processor has hardware support for 128 threads

» Context switch in a single tick

» Global address space, hashed to reduce hot-spots

» No cache. Context switch on memory request.

» Multiple outstanding loads

� Good match for applications which:
» Exhibit complex memory access patterns

» Aren’t computationally intensive (slow clock)

» Have lots of fine-grained parallelism

� Programming model
» Serial code with parallelization directives

» Code is cleaner than MPI, but quite subtle

» Support for “future” based parallelism

Discrete Algorithms & Math Department

Extreme Computing’05

Case Study – Shortest Path

� Compare codes optimized for different architectures

� Option 1: Distributed Memory CompNets
» Run on Linux cluster: 3GHz Xenons, Myrinet network

» LLNL/SNL collaboration – just for short path finding

» Finalist for Gordon Bell Prize on BlueGene/L

» About 1100 lines of C code

� Option 2: MTA parallelization
» Part of general-purpose graph infrastructure

» About 400 lines of C++ code

Discrete Algorithms & Math Department

Extreme Computing’05

Short Paths on Erdos-Renyi
Random Graphs (V=32M, E=128M)

Discrete Algorithms & Math Department

Extreme Computing’05

Connected Components on MTA-2
Power-Law Graph V=34M, E=235M

2.9140

5.4420

10.2910

102.71

timeprocs

Discrete Algorithms & Math Department

Extreme Computing’05

Remarks

� Single processor MTA competitive with
current micros, despite 10x clock difference

� Excellent parallel scalability for MTA on
range of graph problems
» Identical to single processor code

� Eldorado is coming next year
» Hybrid of MTA & Red Storm

» Less well balanced, but affordable

Discrete Algorithms & Math Department

Extreme Computing’05

Broader Lessons

� Space of important apps is broader than PDE solvers

» Data-centric applications may be quite different from

traditional scientific simulations

� Architectural diversity is important

» No single architecture can do everything well

� As memory wall gets steeper, latency tolerance will

be essential for more and more applications

� High level of concurrency requires

» Latency tolerance

» Fine-grained synchronization

	
	
	Why Graphs?
	Characteristics
	Shortest Path Illustration
	Architectural Challenges
	Caching Futility
	Larger Blocks are Expensive
	Properties Needed for Good Graph Performance
	MTA Introduction
	Case Study – Shortest Path
	Short Paths on Erdos-Renyi Random Graphs (V=32M, E=128M)
	Connected Components on MTA-2 Power-Law Graph V=34M, E=235M
	Remarks
	Broader Lessons

