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Quotes from “System Software and Tools for High Performance 

Computing Environments” (1993)

• “The strongest desire expressed by these users was simply to 
satisfy the urgent need to get applications codes running on parallel 
machines as quickly as possible”

• In a list of enabling technologies for mathematical software, “Parallel 
prefix for arbitrary user-defined associative operations should be 
supported.  Conflicts between system and library (e.g., in message 
types) should be automatically avoided.”

- Note that MPI-1 provided both

• Immediate Goals for Computing Environments:

- Parallel computer support environment

- Standards for same

- Standard for parallel I/O

- Standard for message passing on distributed memory machines

• “The single greatest hindrance to significant penetration of MPP 
technology in scientific computing is the absence of common 
programming interfaces across various parallel computing systems”
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Quotes from “Enabling Technologies for Petaflops Computing”

(1995):

• “The software for the current generation of 100 GF machines is not 

adequate to be scaled to a TF…”

• “The Petaflops computer is achievable at reasonable cost with technology 

available in about 20 years [2014].”

- (estimated clock speed in 2004 — 700MHz)

• “Software technology for MPP’s must evolve new ways to design software 

that is portable across a wide variety of computer architectures.  Only then 

can the small but important MPP sector of the computer hardware market 

leverage the massive investment that is being applied to commercial 

software for the business and commodity computer market.”

• “To address the inadequate state of software productivity, there is a need to 

develop language systems able to integrate software components that use 

different paradigms and language dialects.”

• (9 overlapping programming models, including shared memory, message 

passing, data parallel, distributed shared memory, functional programming, 

O-O programming, and evolution of existing languages)
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Some History

• The Cray 1 was a very successful machine.  Why?

- Not the first or fastest vector machine (CDC Star 100 and later Cyber 

203/205 had much higher peaks)

- Early users were thrilled that Cray 1 was 1.76 x faster than CDC 7600

- 1.76 = 22/12.5 = ratio of (scalar) clock speed

- Applications were not vectorizing!

- These were legacy applications

- Balanced (by comparison with Star100 etc.) performance

- Hardware supported programming model; predictable performance

- Software (compiler) trained users

- Worked with the user to performance-tune code

- Of course, this was before the memory wall
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The Curse of Latency

• Current vector systems (often) do not perform well on sparse 

matrix-vector code

- Despite the fact that an excellent predictor of performance for 

these algorithms is STREAM bandwidth on cache-based 

systems

- And that there is a great deal of concurrency

• Lesson: Balance and Amdahl's law

- Many thought Amdahls's law would limit the success of 

massively parallel systems

- Reality — It is often easier to find concurrent scalar threads in 

modern algorithms than scalar-free vector code

- Don’t confuse necessary with sufficient
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How Expensive Is MPI?

• Measured numbers from still untuned MPICH2 shared memory 
implementation:

• MPI_Recv : Number of Instructions 323
MPI_Recv : Number of Cycles 1240

- MPI_Recv : Number of L1 Cache Data misses 029
MPI_Recv : Number of L1 Cache Inst misses 002

• MPI_Send : Number of Instructions                 278

• MPI_Send : Number of Cycles                          995

- MPI_Send : Number of L1 Cache Data misses        007

- MPI_Send : Number of L1 Inst misses                     003

• This may seem like a lot, but much of the cycle cost is latency to 
remote memory, not overhead.  

• On “conventional” systems, eliminating MPI overhead gives less than 
a factor of 2 improvement

- Need latency hiding, adequate concurrent, independent threads to
make effective cost of an operation the overhead cost instead of the 
latency cost
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What Performance Can Compilers Deliver?

• Here are a few questions for a computer vendor
1. Do you have a optimized DGEMM? 

- Did you do it by hand?

- Did you use ATLAS?

- Should users choose it over the reference implementation from 

netlib?

2. Do you have an optimizing Fortran compiler

- Is it effective?

• Aren’t the answers to 1 and 2 incompatible?

• Conclusion: Writing optimizing compilers, even for the easiest, most 

studied case, is hard
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From Atlas

Compiler

Hand-tuned

Parallelizing Compilers Are Not the Answer

Enormous effort required to get good performance

Large gap between 
natural code and 
specialized code 
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Manual Decomposition of Data Structures

• Trick!

- This is from a paper on dense matrix tiling for uniprocessors!

• This suggests that managing data decompositions is a common 
problem for real machines, whether they are parallel or not

- Not just an artifact of MPI-style programming

- Aiding programmers in data structure decomposition is an important 
part of solving the productivity puzzle
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Why Was MPI Successful?

• It address all of the following issues:

- Portability

- Performance

- Simplicity and Symmetry

- Modularity

- Composability

- Completeness

• For a more complete discussion, see “Learning from the 

Success of MPI”, http://www.mcs.anl.gov/~gropp/bib/papers/ 

2001/mpi-lessons.pdf
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Portability and Performance

• Portability does not require a “lowest common denominator”
approach

- Good design allows the use of special, performance enhancing features 
without requiring hardware support

- For example, MPI’s nonblocking message-passing semantics allows 
but does not require “zero-copy” data transfers

• MPI is really a “Greatest Common Denominator” approach

- It is a “common denominator” approach; this is portability

- To fix this, you need to change the hardware (change “common”)

- It is a (nearly) greatest approach in that, within the design space (which 
includes a library-based approach), changes don’t improve the 
approach

- Least suggests that it will be easy to improve; by definition, any
change would improve it.

- Have a suggestion that meets the requirements?  Lets talk!
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Simplicity and Symmetry

• MPI is organized around a small number of concepts

- The number of routines is not a good measure of complexity

- E.g., Fortran

- Large number of intrinsic functions

- C and Java runtimes are large

- Development Frameworks

- Hundreds to thousands of methods

- This doesn’t bother millions of programmers
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Symmetry

• Exceptions are hard on users

- But easy on implementers — less to implement and test

• Example: MPI_Issend

- MPI provides several send modes:

- Regular

- Synchronous

- Receiver Ready

- Buffered

- Each send can be blocking or non-blocking

- MPI provides all combinations (symmetry), including the “Nonblocking
Synchronous Send”

- Removing this would slightly simplify implementations

- Now users need to remember which routines are provided, rather 
than only the concepts

- It turns out he MPI_Issend is useful in building performance and 
correctness debugging tools for MPI programs
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Modularity

• Modern algorithms are hierarchical

- Do not assume that all operations involve all or only one process

- Provide tools that don’t limit the user

• Modern software is built from components

- MPI designed to support libraries

- Example: communication contexts



Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Composability

• Environments are built from components

- Compilers, libraries, runtime systems

- MPI designed to “play well with others”

• MPI exploits newest advancements in compilers

- … without ever talking to compiler writers

- OpenMP is an example

- MPI (the standard) required no changes to work with 

OpenMP
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Completeness

• MPI provides a complete parallel programming model and 

avoids simplifications that limit the model

- Contrast: Models that require that synchronization only occurs 

collectively for all processes or tasks

• Make sure that the functionality is there when the user needs it

- Don’t force the user to start over with a new programming model 

when a new feature is needed
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Conclusions:

Lessons From MPI

• A successful parallel programming model must enable more 

than the simple problems

- It is nice that those are easy, but those weren’t that hard to 

begin with

• Scalability is essential

- Why bother with limited parallelism?

- Just wait a few months for the next generation of hardware

• Performance is equally important

- But not at the cost of the other items 
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More Lessons

• A general programming model for high-performance technical 
computing must address many issues to succeed, including:

• Completeness

- Support the evolution of applications 

• Simplicity

- Focus on users not implementors

- Symmetry reduces the burden on users

• Portability rides the hardware wave

- Sacrifice only if the advantage is huge and persistent

- Competitive performance and elegant design is not enough

• Composability rides the software wave

- Leverage improvements in compilers, runtimes, algorithms

- Matches hierarchical nature of systems
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Improving Parallel Programming

• How can we make the programming of real applications 

easier?

• Problems with the Message-Passing Model

- User’s responsibility for data decomposition

- “Action at a distance”

- Matching sends and receives

- Remote memory access

- Performance costs of a library (no compile-time optimizations)

- Need to choose a particular set of calls to match the hardware

• In summary, the lack of abstractions that match the 

applications
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Challenges

• Must avoid the traps: 

- The challenge is not to make easy programs easier.  The challenge is to make 
hard programs possible.

- We need a “well-posedness” concept for programming tasks

- Small changes in the requirements should only require small changes in the 
code

- Rarely a property of “high productivity” languages

- Abstractions that make easy programs easier don’t solve the problem

- Latency hiding is not the same as low latency

- Need “Support for aggregate operations on large collections”

• An even harder challenge: make it hard to write incorrect programs.

- OpenMP is not a step in the (entirely) right direction

- In general, current shared memory programming models are very dangerous.

- They also perform action at a distance

- They require a kind of user-managed data decomposition to preserve 
performance without the cost of locks/memory atomic operations

- Deterministic algorithms should have provably deterministic implementations
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What is Needed To Achieve Real High Productivity 

Programming

• Simplify the construction of correct, high-performance applications

• Managing Data Decompositions

- Necessary for both parallel and uniprocessor applications

- Many levels must be managed

- Strong dependence on problem domain (e.g., halos, load-balanced 
decompositions, dynamic vs. static)

• Possible approaches

- Language-based

- Limited by predefined decompositions

- Some are more powerful than others; Divacon provided a built-in 
divided and conquer

- Library-based

- Overhead of library (incl. lack of compile-time optimizations), 
tradeoffs between number of routines, performance, and generality

- Domain-specific languages …
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Domain-specific languages

• A possible solution, particularly when mixed with adaptable runtimes

• Exploit composition of software (e.g., work with existing compilers, 
don’t try to duplicate/replace them)

• Example: mesh handling

- Standard rules can define mesh

- Including “new” meshes, such as C-grids 

- Alternate mappings easily applied (e.g., Morton orderings)

- Careful source-to-source methods can preserve human-readable code

- In the longer term, debuggers could learn to handle programs built with 
language composition (they already handle 2 languages – assembly 
and C/Fortran/…)

• Provides a single “user abstraction” whose implementation may use 
the composition of hierarchical models

- Also provides a good way to integrate performance engineering into the 
application
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PGAS Languages

• A good first step

• Do not address many important issues

- Still based on action-at-a-distance

- No high-level support for data decomposition

- No middle ground between local and global

- Lower overhead access to remote data but little direct support 

for latency hiding

- I/O not well integrated (e.g., the easiest way to write a CoArray

in canonical form (as part of a distributed array) is to use MPI)

- Not performance transparent; no direct support for performance 

debugging
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How to Replace MPI 

• Retain MPI’s strengths

- Performance from matching programming model to the realities of underlying 
hardware

- Ability to compose with other software (libraries, compilers, debuggers)

- Determinism (without MPI_ANY_{TAG,SOURCE})

- Run-everywhere portability

• Add to what MPI is missing, such as

- Distributed data structures (not just a few popular ones)

- Low overhead remote operations; better latency hiding/management; overlap 
with computation (not just latency; MPI can be implemented in a few hundred 
instructions, so overhead is roughly the same as remote memory reference 
(memory wall))

- Dynamic load balancing for dynamic, distributed data structures

- Unified method for treating multicores, remote processors, other resources

• Enable the transition from MPI programs

- Build component-friendly solutions

- There is no one, true language
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Further Reading

• For a historical perspective (and a reality check),

- “Enabling Technologies for Petaflops Computing”, Thomas Sterling, 
Paul Messina, and Paul H. Smith, MIT Press, 1995

- “System Software and Tools for High Performance Computing 
Environments”, edited by Paul Messina and Thomas Sterling, SIAM, 
1993

• For current thinking on possible directions,

- “Report of the Workshop on High-Productivity Programming Languages 
and Models”, edited by Hans Zima, May 2004.
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