
FEC: 1 Oct 26, 2005

Custom vs Commodity Processors

Bill Dally

October 26, 2005

FEC: 2 Oct 26, 2005

95% of top 500 machines use commodity
processors

Why?

FEC: 3 Oct 26, 2005

Why 95% Commodity

• Are they faster?

• Are they more cost effective?

• Do they “ride the Moore’s law curve”?

• Or is it just the “easy path”

FEC: 4 Oct 26, 2005

Definitions

Custom Processor: Processor built specifically for
high-end scientific computing. Incorporates high-
bandwidth memory system, latency hiding
mechanisms, and ability to exploit data- and thread-
level parallelism. Intended to scale to large numbers
of processors.

Commodity Processor: Processor build primarily for
mass market – workstation and enterprise
database/web server. Incorporates cache-based
memory system, and ability to exploit instruction-level
parallelism

FEC: 5 Oct 26, 2005

Objective

Capacity: Deliver maximum sustained performance per
lifetime $ at modest scale ($1M-10M)

Capability: Deliver maximum sustained performance
per lifetime $ at large scale (>$100M).

(You pay for scalability, but not necessarily at small scales)

FEC: 6 Oct 26, 2005

Custom vs. Commodity – Pros and Cons

• Custom

+ High bandwidth memory sys
– 2-8x raw bandwidth

+ High bandwidth gather
– 16x bandwidth on irregular acc.

+ Latency hiding
– 100s of outstanding refs

– 10x bandwidth*

+ Data/Thread parallelism
– 100s of FPUs per chip (20x)

- Lower frequency (0.5x)
– Circuits and process

- Non recurring costs
– 10K to 100K units

Commodity

+ Better process
– 1.4x freq

+ Better circuits
– 1.4x freq

+ Amortized development costs
– 100M units for desktops

– 1M units for servers

- 128-byte memory access
– 1/16 performance on gather

- 4-8 outstanding memory refs
– Need 100s to hide latency

- Little DP or TLP
- 2-4 FPUs

FEC: 7 Oct 26, 2005

Balance in Machine Design

• Each phase of an application is limited by one of:

– Arithmetic bandwidth

– Local memory bandwidth

– Global memory bandwidth (network bandwidth)

Local
Memory

Processor
(FPUs)

Network

FEC: 8 Oct 26, 2005

Technology makes arithmetic cheap and bandwidth
expensive

100s of FPUs per chip
$0.50/GFLOPS
50mW/GFLOPS

40GB/s off-chip BW
$5/GB/s

0.25W/GB/s

Cost of BW increases
with distance

4x over backplane
6x over cable
25x VSR optics

FEC: 9 Oct 26, 2005

Cost is dominated by bandwidth (and memory)

• Arithmetic is cheap $0.50/GFLOPS,

– (200GFLOPS chips)

• Memory is $200/GByte, ~$10/GB/s

– 1GByte of memory costs 400GFLOPS

– 1GB/s of bandwidth costs 20GFLOPS

• Global bandwidth moderate cost

– $1 (board), $4 (backplane), $25 (fiber) per
GB/s

– 2GFLOPS (board), 8GFLOPS (backplane),
50GFLOPS (global)

FEC: 10 Oct 26, 2005

Recurring vs. Non-recurring costs

• Developing a custom processor costs $5-10M
– Several examples

– Quotes on Merrimac processor from 3 vendors ($6M)

– Standard-cell design with semi-custom datapaths

– Two mask sets in 90nm or 65nm

• Recurring costs $100-200 per unit

• Overall costs depend on volume
– $1,200 per processor for 10K processors (20PFLOPS)

– $300 per processor for 100K processors

• Costs $10M for the first one, then $200 per node

• NRE less than 10% the cost of a $100M Capability
machine

FEC: 11 Oct 26, 2005

Frequency can be misleading

• Commodity processors operate at 3+ GHz
– The result of aggressive process and circuit design.

• However, what matters is
– Total arithmetic performance

• 200 FPUs at 1GHz (200GF) is better than 2 FPUs at 3GHz (6GF)

– Latency around critical loops
• Roughly the same

– Memory bandwidth + latency hiding
• Much better for custom

– Performance per unit power
• Better for custom

• Bottom line
– A custom processor at 1GHz may greatly outperform a
commodity processor at 3GHz (20x or more)

FEC: 12 Oct 26, 2005

Example: The Merrimac Stream Processor

• 64 64-bit MULADD FPUs

– Arranged in 16 clusters

• Capable memory system

• Designed for reliability

• 1 GHz in 90nm

– 128 GFLOPS

• Area efficient

– ~150mm2 in 90nm

– Pentium 4 is ~120mm2 in 90nm
but only 6.4 GFLOPS

• Efficient at ~25W

– Pentium 4 is 100W

– 28% of energy in
ALUs

Merrimac processor is tuned for scientific computing

MIPS64

20kc

(sample)

MIPS64

20kc

(sample)

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

Microcontroller

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

C
lu
st
e
r

Network Interface

1
6
 D
R
A
M
 In
te
rf
a
c
e
s

Fo
rw

a
rd
 E
C
C

Cache Bank

Cache Bank

Cache Bank

Cache Bank

Cache Bank

Cache Bank

Cache Bank

Cache Bank

M
e
m
o
ry
 S
w
it
c
h

A
d
d
r
G
e
n

R
e
o
rd
e
r
B
u
ff
e
r

A
d
d
r
G
e
n

R
e
o
rd
e
r
B
u
ff
e
r

12.5 mm

1
2
.5
 m

m

Merrimac Bandwidth Hierarchy

Register hierarchy and data-parallel execution

enable high performance and efficiency – 128 GFLOPS ~25 W

~61 KB

64

64-bit

MADDs

(16 clusters)

100χχχχ

wire

c
lu
ste

r sw
itc

h
c
lu
ste

r sw
itc

h

S
R
F
 la

n
e

S
R
F
 la

n
e

1Kχχχχ

switch

1 MB

3,840 GB/s512 GB/s

In
te
r-c

lu
ste

r a
n
d
 m

e
m
o
ry
 sw

itc
h
e
s

10Kχχχχ

switch

c
a
c
h
e
 b
a
n
k

c
a
c
h
e
 b
a
n
k

D
R
A
M
 b
a
n
k

D
R
A
M
 b
a
n
k

I/O
 p
in
s

chip

crossing

512 KB2 GB

64 GB/s<64 GB/s

High memory bandwidth provided

64 GB/s sequential access bandwidth

~61 KB

64

64-bit

MADDs

(16 clusters)

100χχχχ

wire

c
lu
ste

r sw
itc

h
c
lu
ste

r sw
itc

h

S
R
F
 la

n
e

S
R
F
 la

n
e

1Kχχχχ

switch

1 MB

3,840 GB/s512 GB/s

In
te
r-c

lu
ste

r a
n
d
 m

e
m
o
ry
 sw

itc
h
e
s

10Kχχχχ

switch

c
a
c
h
e
 b
a
n
k

c
a
c
h
e
 b
a
n
k

D
R
A
M
 b
a
n
k

D
R
A
M
 b
a
n
k

I/O
 p
in
s

chip

crossing

512 KB2 GB

64 GB/s<64 GB/s

Latency hiding via stream transfers

1,000s of words tranferred in one instruction

~61 KB

64

64-bit

MADDs

(16 clusters)

100χχχχ

wire

c
lu
ste

r sw
itc

h
c
lu
ste

r sw
itc

h

S
R
F
 la

n
e

S
R
F
 la

n
e

1Kχχχχ

switch

1 MB

3,840 GB/s512 GB/s

In
te
r-c

lu
ste

r a
n
d
 m

e
m
o
ry
 sw

itc
h
e
s

10Kχχχχ

switch

c
a
c
h
e
 b
a
n
k

c
a
c
h
e
 b
a
n
k

D
R
A
M
 b
a
n
k

D
R
A
M
 b
a
n
k

I/O
 p
in
s

chip

crossing

512 KB2 GB

64 GB/s<64 GB/s

FEC: 16 Oct 26, 2005

SRF Decouples Execution from Memory

Decoupling allows efficient SRF allocation

Decoupling allows efficient scheduling of instructions on FPUs

c
lu
ste

r sw
itc

h
c
lu
ste

r sw
itc

h

S
R
F
 la

n
e

S
R
F
 la

n
e

In
te
r-c

lu
ste

r a
n
d
 m

e
m
o
ry
 sw

itc
h
e
s

c
a
c
h
e
 b
a
n
k

c
a
c
h
e
 b
a
n
k

D
R
A
M
 b
a
n
k

D
R
A
M
 b
a
n
k

I/O
 p
in
s

Unpredictable I/O Latencies Static latencies

FEC: 17 Oct 26, 2005

Enables high utilization of large numbers of FPUs

0

10

20

30

40

50

60

70

80

90

100

110

120

0

10

20

30

40

50

60

70

80

90

100

110

120

20

30

40

50

60

70

80

90

100

110

120

20

30

40

50

60

70

80

90

100

110

120

ComputeCellInt kernel from
StreamFem3D

Over 95% of peak with simple
hardware

Depends on explicit
communication to make delays
predictable

One iteration SW Pipeline

FEC: 18 Oct 26, 2005

And efficient use of on-chip storage

StreamFEM application

Prefetching, reuse, use/def, limited spilling

Compute
Flux
States

Compute
Numerical
Flux

Element
Faces

Gathered
Elements

Numerical
Flux

Gather
Cell

Compute
Cell
Interior

Advance
Cell

Elements
(Current)

Elements
(New)

Read-Only Table Lookup Data
(Master Element)

Face
Geometry

Cell
Orientations

Cell
Geometry

FEC: 19 Oct 26, 2005

Merrimac Application Results

Simulated on a machine with 64GFLOPS peak performance and no fused MADD

* The low numbers are a result of many divide and square-root operations

1.5M
(1.3%)

4.2M
(2.9%)

108M
(95.0%)

9.7*38.8*GROMACS

3.4M
(1.4%)

7.2M
(2.9%)

234.3M
(95.7%)

7.4*12.9*StreamFLO

0.7M
(0.8%)

1.6M
(1.7%)

90.2M
(97.5%)

12.1*14.2*StreamMD
(grid algorithm)

2.8M
(0.2%)

7.7M
(0.4%)

186.5M
(99.4%)

13.839.2StreamFEM3D
(MHD, constant)

1.8M
(1.1%)

6.3M
(3.9%)

153.0M
(95.0%)

17.131.6StreamFEM3D
(Euler, quadratic)

Mem RefsSRF RefsLRF RefsFP Ops /
Mem Ref

Sustained
GFLOPS

Application

Applications achieve high performance and

make good use of the bandwidth hierarchy

FEC: 20 Oct 26, 2005

What about software?

• Software costs are typically much greater than
hardware costs

– Particularly applications software

• Custom processors can make software easier

– High local and global bandwidth

– Less sensitivity to “cache issues”

– Fewer “performance surprises”

• Compilers for custom processors are not difficult

– Leverage existing compiler infrastructure

• However, little application software is written to take
advantage of such processors

– MPI encourages LCD applications

FEC: 21 Oct 26, 2005

Summary

• Custom processors can provide more sustained performance
per $ than commodity processors.
– Better at Capability and Capacity

• Bandwidth is expensive and scarce

• Tailor memory system to characteristics of scientific
applications
– Lots of bandwidth (64 GB/s per node)

– Latency hiding (1000s of cycles)

– Good gather/scatter performance (about 20GB/s per node)

• Provide explicit on-chip storage hierarchy to reduce BW
demand and enable FPU scheduling

• Overprovision inexpensive FPUs

• Design in RAS for large configurations

• Can deliver 128GFLOPS node for $1K (parts cost)
– 1 PFLOPS at 8K nodes and $8M

	Custom vs Commodity Processors
	95% of top 500 machines use commodity processors
	Why 95% Commodity
	Definitions
	Objective
	Custom vs. Commodity – Pros and Cons
	Balance in Machine Design
	Technology makes arithmetic cheap and bandwidth expensive
	Cost is dominated by bandwidth (and memory)
	Recurring vs. Non-recurring costs
	Frequency can be misleading
	Example: The Merrimac Stream Processor
	Merrimac Bandwidth Hierarchy
	High memory bandwidth provided
	Latency hiding via stream transfers
	SRF Decouples Execution from Memory
	Enables high utilization of large numbers of FPUs
	And efficient use of on-chip storage
	Merrimac Application Results
	What about software?
	Summary

