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95% of top 500 machines use commodity 
processors 

Why?
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Why 95% Commodity

• Are they faster?

• Are they more cost effective?

• Do they “ride the Moore’s law curve”?

• Or is it just the “easy path”
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Definitions

Custom Processor: Processor built specifically for 
high-end scientific computing.  Incorporates high-
bandwidth memory system, latency hiding 
mechanisms, and ability to exploit data- and thread-
level parallelism.  Intended to scale to large numbers 
of processors.

Commodity Processor: Processor build primarily for 
mass market – workstation and enterprise 
database/web server.  Incorporates cache-based 
memory system, and ability to exploit instruction-level 
parallelism



FEC: 5 Oct  26, 2005

Objective

Capacity: Deliver maximum sustained performance per 
lifetime $ at modest scale ($1M-10M)

Capability:  Deliver maximum sustained performance 
per lifetime $ at large scale (>$100M). 

(You pay for scalability, but not necessarily at small scales)
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Custom vs. Commodity – Pros and Cons

• Custom

+ High bandwidth memory sys
– 2-8x raw bandwidth

+ High bandwidth gather
– 16x bandwidth on irregular acc.

+ Latency hiding
– 100s of outstanding refs

– 10x bandwidth*

+ Data/Thread parallelism
– 100s of FPUs per chip (20x)

- Lower frequency (0.5x)
– Circuits and process

- Non recurring costs
– 10K to 100K units

Commodity

+ Better process
– 1.4x freq

+ Better circuits
– 1.4x freq

+ Amortized development costs
– 100M units for desktops

– 1M units for servers

- 128-byte memory access
– 1/16 performance on gather

- 4-8 outstanding memory refs
– Need 100s to hide latency

- Little DP or TLP
- 2-4 FPUs
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Balance in Machine Design

• Each phase of an application is limited by one of:

– Arithmetic bandwidth

– Local memory bandwidth

– Global memory bandwidth (network bandwidth)

Local 
Memory

Processor
(FPUs)

Network
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Technology makes arithmetic cheap and bandwidth 
expensive

100s of FPUs per chip
$0.50/GFLOPS
50mW/GFLOPS

40GB/s off-chip BW
$5/GB/s

0.25W/GB/s

Cost of BW increases 
with distance

4x over backplane
6x over cable
25x VSR optics
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Cost is dominated by bandwidth (and memory)

• Arithmetic is cheap $0.50/GFLOPS, 

– (200GFLOPS chips)

• Memory is $200/GByte, ~$10/GB/s

– 1GByte of memory costs 400GFLOPS

– 1GB/s of bandwidth costs 20GFLOPS

• Global bandwidth moderate cost

– $1 (board), $4 (backplane), $25 (fiber) per 
GB/s

– 2GFLOPS (board), 8GFLOPS (backplane), 
50GFLOPS (global)
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Recurring vs. Non-recurring costs

• Developing a custom processor costs $5-10M
– Several examples

– Quotes on Merrimac processor from 3 vendors ($6M)

– Standard-cell design with semi-custom datapaths

– Two mask sets in 90nm or 65nm

• Recurring costs $100-200 per unit

• Overall costs depend on volume
– $1,200 per processor for 10K processors (20PFLOPS)

– $300 per processor for 100K processors

• Costs $10M for the first one, then $200 per node

• NRE less than 10% the cost of a $100M Capability 
machine
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Frequency can be misleading

• Commodity processors operate at 3+ GHz
– The result of aggressive process and circuit design.

• However, what matters is
– Total arithmetic performance

• 200 FPUs at 1GHz (200GF) is better than 2 FPUs at 3GHz (6GF)

– Latency around critical loops
• Roughly the same

– Memory bandwidth + latency hiding
• Much better for custom

– Performance per unit power
• Better for custom

• Bottom line
– A custom processor at 1GHz may greatly outperform a 
commodity processor at 3GHz (20x or more)
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Example:  The Merrimac Stream Processor

• 64 64-bit MULADD FPUs

– Arranged in 16 clusters

• Capable memory system

• Designed for reliability

• 1 GHz in 90nm

– 128 GFLOPS

• Area efficient

– ~150mm2 in 90nm

– Pentium 4 is ~120mm2 in 90nm
but only 6.4 GFLOPS

• Efficient at ~25W

– Pentium 4 is 100W

– 28% of energy in
ALUs

Merrimac processor is tuned for scientific computing
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Merrimac Bandwidth Hierarchy

Register hierarchy and data-parallel execution

enable high performance and efficiency – 128 GFLOPS ~25 W

~61 KB
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High memory bandwidth provided

64 GB/s sequential access bandwidth

~61 KB
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Latency hiding via stream transfers

1,000s of words tranferred in one instruction

~61 KB

64

64-bit

MADDs

(16 clusters)

100χχχχ

wire

c
lu
ste

r sw
itc

h
c
lu
ste

r sw
itc

h

S
R
F
 la

n
e

S
R
F
 la

n
e

1Kχχχχ

switch

1 MB

3,840 GB/s512 GB/s

In
te
r-c

lu
ste

r a
n
d
 m

e
m
o
ry
 sw

itc
h
e
s

10Kχχχχ

switch

c
a
c
h
e
 b
a
n
k

c
a
c
h
e
 b
a
n
k

D
R
A
M
 b
a
n
k

D
R
A
M
 b
a
n
k

I/O
 p
in
s

chip

crossing

512 KB2 GB

64 GB/s<64 GB/s



FEC: 16 Oct  26, 2005

SRF Decouples Execution from Memory

Decoupling allows efficient SRF allocation

Decoupling allows efficient scheduling of instructions on FPUs
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Enables high utilization of large numbers of FPUs
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And efficient use of on-chip storage

StreamFEM application

Prefetching, reuse, use/def, limited spilling
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Numerical
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Merrimac Application Results

Simulated on a machine with 64GFLOPS peak performance and no fused MADD

* The low numbers are a result of many divide and square-root operations
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Applications achieve high performance and 

make good use of the bandwidth hierarchy
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What about software?

• Software costs are typically much greater than 
hardware costs

– Particularly applications software

• Custom processors can make software easier

– High local and global bandwidth

– Less sensitivity to “cache issues”

– Fewer “performance surprises”

• Compilers for custom processors are not difficult

– Leverage existing compiler infrastructure

• However, little application software is written to take 
advantage of such processors

– MPI encourages LCD applications 
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Summary

• Custom processors can provide more sustained performance 
per $ than commodity processors.
– Better at Capability and Capacity

• Bandwidth is expensive and scarce

• Tailor memory system to characteristics of scientific 
applications
– Lots of bandwidth (64 GB/s per node)

– Latency hiding (1000s of cycles)

– Good gather/scatter performance (about 20GB/s per node)

• Provide explicit on-chip storage hierarchy to reduce BW 
demand and enable FPU scheduling

• Overprovision inexpensive FPUs

• Design in RAS for large configurations

• Can deliver 128GFLOPS node for $1K (parts cost)
– 1 PFLOPS at 8K nodes and $8M
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