Superconductor Technologies for Extreme Computing

Arnold Silver

Workshop on Frontiers of Extreme Computing Monday, October 24, 2005 Santa Cruz, CA

Outline

Introduction

- Single Flux Quantum (SFQ) Technology
- State-of-the-Art
- > Prospects
- > Quantum Computing

> Summary

Notional Diagram of a Superconductor Processor

- Superconductor processors communicate with local cryogenic RAM and with the cryogenic switch network.
- > Cryogenic RAM communicates via wideband I/O with ambient electronics.

Early Technology Limited

- > Early superconductor logic was voltage-latching
 - Voltage state data
 - AC power required
 - Speed limited by RC load and reset time (~GHz)
- **Single Flux Quantum (SFQ)** is latest generation.
 - Current/Flux state data
 - SFQ pulses transfer data
 - DC powered
 - Higher speed (~100 GHz)

Incremental progress on DoD contracts.

- Small annual budgets
- Focus on small circuit demos
- Minimal infrastructure investment

SFQ Features

- Quantum-mechanical devices
- An "electronics technology"
- High speed and ultra-low on-chip power dissipation
 - Fastest, lowest power digital logic
 - − ≥ 100 GHz clock expected
 - ~ nW/gate/GHz expected
- Wideband communication on-chip and inter-chip
 - Superconducting transmission lines
 - Low-loss
 - Low-dispersion
 - Impedance matched
 - 60 GHz data transfer demonstrated with negligible cross-talk

Comparison of a 12 GFLOPS SFQ and CMOS chip

40 kgate SFQ chip50 GHz clock2 mWPlus 0.8 W cooling power2 Mgate CMOS chip1 GHz clock80 WAlso requires cooling

Some Issues Need To Be Addressed

Present disadvantages

- Low chip density and production maturity
- Inadequate cryogenic RAM
- Cryogenic cooling
- Cryogenic ambient I/O
- > Density and maturity will increase with better VLSI
- Promising candidates for cryogenic RAM
 - Hybrid superconductor-CMOS
 - Hybrid superconductor-MRAM
 - SFQ RAM
- Cryogenics is an enabler for low power
- Options for wideband I/O exist

Technology Overview

> Basic technology

- Josephson tunnel junctions and SQUIDs
- SFQ logic gates
- SFQ transmitters-receivers
- Cryogenic memory
- Superconducting films produce microstrip and stripline transmission lines
 - Zero-resistance at dc (no ohmic loss)
 - Low-loss, low-dispersion at MMW frequencies
 - Impedance-matched
 - Wideband

> Enabling technologies

- Advanced VLSI foundry
- Superconducting multi-chip modules
- Wideband I/O technologies
 - Optical fiber
 - Electrical ribbon cable
 - Cryogenic LNAs

Comparison of SFQ - CMOS Functions

Function	CMOS	SFQ
Basic Switch	 Transistor 	 Josephson tunnel junction (a 2 terminal device)
Data Format	 Voltage level 	 Identical picosecond (current) pulses
Speed Test	 Ring oscillator 	 Asynchronous flip-flop, static divider 770 GHz achieved 1,000 GHz expected
Data Transfer	 Voltage data bus RC delay with power dissipation 	 "Ballistic" transfer at ~ 100 μm/ps in nearly lossless and dispersion-free passive transmission lines (PTL)
Clock Distribution	 Voltage clock bus 	 Clock pulse regeneration and ballistic transfer at ~ 100 μm/ps in nearly lossless and dispersion-free PTLs
Logic Switch	 Complementary transistor pair 	 Two-junction comparator
Bit Storage	 Charge on a capacitor 	 Current in a lossless inductor
Fan-In, Fan-Out	 Large 	 Small
Power	 Volt levels 	 Millivolt levels
Power Distribution	 Ohmic power bus 	Lossless superconducting wiring
Noise	■ ≥ 300 K thermal noise	4 K thermal noise that enables low power operation

Josephson Tunnel Junction

SFQ Technology

SQUIDs Are Basic SFQ Elements

- Combine flux quantization with the non-linear Josephson effects
- Store flux quantum or transmit SFQ pulse

SFQ Is A Current Based Technology

- When (Input + I_{bias}) exceeds JJ critical current I_c, JJ "flips", producing an SFQ pulse.
- > Area of the pulse is Φ_0 =2.067 mV-ps
- > Pulse width shrinks as J_c increases
- SFQ logic is based on counting single flux quanta

- SFQ pulses propagate along impedance-matched passive transmission line (PTL) at the speed of light in the line (~ c/3).
- Multiple pulses can propagate in PTL simultaneously in both directions.

SFQ Gates

Data Latch (DFF)

- SFQ pulse is stored in a larger-inductance loop
- Clock pulse reads out stored
 SFQ
- If no data is stored, clock pulse escapes through the top junction

"OR" Gate (merger)

Pulses from both inputs propagate to the output

"AND" Gate

- Two pulses arriving "simultaneously" switch output junction
- DFF in each input produces clocked AND gate
- PTLs transmit clock and data signals
- Average number of junctions per gate is 10

SFQ Is The Fastest Digital Technology

- **Toggle Flip-Flop Static Frequency Divider**
- Benchmark of SFQ circuit performance
- Maximum frequency scales with J_c

Measured dc to 446 GHz static divider 770 GHz demonstrated in experiment

SFQ Is The Lowest Power Digital Technology

- > One SFQ pulse dissipates $I_{C} \Phi_{0}$ in shunt resistor
 - For I_c = 100 μ A \Rightarrow 2 x10⁻¹⁹ Joule (~ 1eV)
 - ~ 5 junctions switch in single logic operation
 - 1 nW/gate/GHz \Rightarrow 100 nW/gate at 100 GHz

- Static power dissipation in bias resistors: I²R
 For I_c = 100 μA biased at 0.7 I_c
 - Typical $V_{\text{bias}} = 2 \text{ mV}$ (to maximize bias margin)
 - 140 nW/JJ, 1400 nW/gate is 23 X the dynamic power

- Voltage-biased SFQ gates will eliminate bias resistors and static power dissipation
 - Self-clocked complementary logic
 - Incorporates clock distribution circuitry
 - $-V_{\text{bias}} = \Phi_0 F_{\text{Clock}}$

SFQ Digital ICs Have Been Developed

- First SFQ circuit (~ 1977) was a dc to SFQ converter integrated with toggle flip-flops to form a binary counter.
- Extensive development of SFQ logic did not occur until after 1990.
- > Advanced SFQ logic was developed on HTMT FLUX.
 - Architecture
 - Design tools
 - LSI fabrication
 - Logic
 - High data-rate on-chip communications
 - Inter-chip communications
 - Vector registers
 - Microprocessor logic chip

Superconductor IC Fabrication Is Simpler Than CMOS

- Oxidized silicon wafers (100-mm)
 - 1. Deposit films (Nb trilayer, Nb wires, resistors, and oxide)
 - 2. Mask (g-line, i-line photolithography or e-beam)
 - 3. Etch (dry etch, typical gases are SF₆, CHF₃ + O₂, CF₄)
 - 4. Repeated 14 to 15 times
- No implants, diffusions, high temperature steps
- Trilayer deposition forms Josephson tunnel junction
- All layers are deposited in-situ
- Al is passively oxidized *in-situ* at room temperature
- 1 μm minimum feature, 2.6 μm wire pitch
- Throughput limited by deposition tools

Cadence-based SFQ Design Flow (NGST) Is similar to Semiconductor Design

Logic Synthesis & Verification

Complex Chips Have Been Reported

Function	Complexity	Speed	Cell Library	Organizations	
FLUX-1. 8-bit μP prototype. 25 30-bit-dual-op instructions.	<mark>63 K Junctions.</mark> 10.3 mm x 10.6 mm.	Designed for 20 GHz. Not tested.	Yes. Incorporates drivers/receivers for PTL.	Northrop Grumman, Stony Brook, JPL	
CORE1α10. 8-bit bit-serial μP. 7 8-bit instructions.	7 K Junctions. 3.4 mm x 3.2 mm.	21 GHz local clock. 1 GHz system clock. Fully functional.	Yes. Gates connected by JTLs and/or PTLs	ISTEC-SRL, Nagoya U., Yokohama National U.	
MAC and Prefilter for programmable pass- band A/D converter.	<mark>6 K–11 K Junctions.</mark> 5 mm x 5 mm.	20 GHz design	Yes. Gates connected by parameterized JTLs and/or PTLs	Northrop Grumman	
A/D converter	6 K Junctions.	19.6 GHz.	?	Hypres	
Digital receiver	12 K Junctions.	12 GHz.	?	Hypres	
FIFO buffer memory	4K bit. 2.6 mm x 2.5 mm	32 bits tested at 40 GHz.	No	Northrop Grumman	
X-bar switch128 x 128 switch. 32 x 32 module.2.5 Gbps.		2.5 Gbps.	No	NSA, Northrop Grumman	
SFQ X-bar switch	32 x 32 module.	40 Gbps.	No	Northrop Grumman	

FLUX-1 Microprocessor Chip

- Objective to demonstrate of 5K Gate SFQ chip operating at 20 GHz
- 8-bit microprocessor design
- 1-cm chip
- 8 20 Gb/s transmitters, receivers
- FLUX-1 chip redesigned, fabricated, partially tested
- 1.75 μm, 4 kA/cm² junction Nb technology
- 20 GHz internal clock
- 5 GByte/sec inter-chip data transfer limited by μP architecture
- Scan path diagnostics included
- 63 K junctions, 5 Kgate equivalent
- Power dissipation ~ 9 mW @ 4.5K
- 40 GOPS peak computational capability (8-bits @ 20-GHz clock)
- Fabricated in TRW 4 kA/cm² process in 2002

8-20 Gb/s receivers

8-20 Gb/s transmitters

60 GHz Interconnect Demonstrated

- MCM Nb stripline wiring is low loss, wideband
- High density, low impedance solder bump arrays
- Ultra-low power driver-receiver enables high data rate communications
- SFQ data format enables multiple bits in transmission line simultaneously, increases throughput
- Demonstrated to 60 Gb/s through 2 solder bumps, 4Ω resistor, and 4Ω transmission lines on chip and MCM
- Timing errors produced BER floor above 30 Gb/s

SFQ Faces Challenges of 100+ GHz Technologies

> Low power

- Low fan-out, need "pulse splitting":
 - JTL provides <u>current amplification</u>
 - Amplified pulse can drive two JTLs
- All connections are point-to-point
- Fast, large RAM is hard to make

> High speed

- No global clock
 - Clock and data pulses are considered to be the same
 - Need to consider asynchronous/delay insensitive/self-timed/micropipelined
- On-chip latencies can reach many clock cycles
 - 10 ps clock period in PTL corresponds to 2 mm length
 - Pulse splitting adds latency

> On the cutting edge

- No truly automated place-and-route yet
- Off-the-shelf CAD tools need to be heavily customized
- Efficient gate library approach has to be refined

Requirement for wideband I/O to ambient RAM

Improved Chip Performance Feasible

Improve parameters by ordersof-magnitude

- + Increase junction and gate density
- + Increase clock frequency
- + Increase junction speed to 1,000 GHz by increasing $J_c \ge 100 \text{ kA/cm}^2$
- + Increase chip yield
- Reduce power dissipation to SFQ switching dissipation level
- Reduce bias current

Establish foundry following CMOS practice

- Lithography at 250-180 nm; 90-60 nm
- J_C >20 kA/cm²; ≥100 kA/cm²
- Add superconducting layers 7-9; >20
- Vertically separate power and data transmission from gates
- Achieve ≥1M junctions/cm² (≥10⁵ gates); 100-250M junctions/cm² (10-25M gates)
- Increase clock to 50 GHz; ≥100 GHz

Improve CAD tools and methods

- May need to improve physical models for junctions with higher J_C
- Shorten development time

Density Is Increased by Adding Wiring Layers

IBM 90-nm Server-Class

CMOS process

- More metal layers are essential to increase chip density
- Vertically isolate power and communications lines from active devices
- Superconducting ground planes are excellent shields
- Full planarization and competitive lithography

Fully-Planarized, 6-Metal Process (Proposed by ISTEC-SRL, Japan,

Nagasawa et al., 2003)

SFQ Technology Projections

	Before 2004	2010		Beyond 2010		
Technology Projections						
Technology Node	1 μm 250 - 180 nm			90 nm or better		
Current Density	8 kA/cm²	50 kA/cm²		> 100 kA/cm ²		
Superconducting Layers	4	7 - 8		~ 20		
New Process Elements	NA	Full Planarization		 Alternate barriers Additional junction trilayers Vertical resistors and inductors 		
Power	I _C V _{bias}	Reduced Bias Voltage		 CMOS-like Reduced I_C 		
	Proje	cted Chip Characteris	tics			
Junction Density	60 k/cm ² 2 - 5 M/cm ²			100-250 M/cm ²		
Clock Frequency	< 20 GHz	50 - 100 GHz		100 - 250 GHz		
Power	0.2 μW/Junction	8 nW/GHz/Junction		0.4 nW/GHz/Junction		
	Increased Clock Frequency			Increased Density		
Process Improvement	 Smaller junction with higher J_c 		 Smaller line pitch Greater vertical integration 			
Benefits	Faster circuitsLarger signals		 More gates/cm² Reduced on-chip latency 			
Potential Disadvantages	Possibly larger spreadsIncreased system latency		 Potentially lower yield 			

Latency is measured in clock ticks

Gate Access Within Clock Period Is Important

- Clock radius (R_{CL}) is maximum distance data can travel within a clock period.
- N_{CL} is number of gates within a clock radius.
- Clock radius is limited by time-of-flight and the clock frequency.
- Increasing gate density is essential to increasing effectiveness.

Density Is Key To Gate Access		Clock (GHz)	25	50	100	200	250	
		Clock Radius (mm)	4	2	1	0.5	0.4	
		Clock Area (mm²)	50	12.6	3.14	0.79	0.5	
	Density (JJs/cm²)	Density (Gates/mm²)	Number of Gates Within Clock Radius (N _{CL})					
	5 K	5	250	63	16	4	2.5	
	60 K	60	3 K	750	190	47	30	
	1 M	1 K	50 K	13 K	3.1 K	790	500	
	5 M	5 K	250 K	63 K	16 K	4 K	2.5 K	
	30 M	30 K	1.5 M	380 K	94 K	24 K	15 K	
	100 M	100 K	5 M	1.3 M	310 K	79 K	50 K	
	250 M	250 K	12.5 M	3.1 M	790 K	200 K	130 K	

Clock radius assumed to be 1/2 of time-of-flight.

High-End SFQ Computing Engine

<u>2005</u>

> Not feasible

~ 100 chips per processor

0.5 M processor chips, ~ 10⁹ gates

<u>2010</u>

~ 10 chips per processor
 40 K processor chips, ~ 10⁹ gates

After 2010

➤ ~ 10 to 20 processors per chip

400 processor chips, including embedded memory

Applications to Quantum Computing

- Quantum computing is being investigated using superconducting qubits.
- Flux-based superconducting qubits are physically similar to SFQ devices.
- SFQ circuits are best candidates to control/read superconducting qubits at millikelvin temperatures.

Summary

- SFQ needs major engineering development in chip technology if it is going to be a player in high-end computing.
- The engineering requirements are understood and a development plan defined.
- > Prospects are exciting and achievable.