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29 Years Ago Today
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Linpack Zettaflops in 2032
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The Way We Were:  1974

� IBM 370 market mainstream

� Approx. 1 Mflops

� DEC PDP-11 geeks delight

� Seymour Cray started 

working on Cray-1

� Approx. 100 Mflops

� 2nd generation 

microprocessor

� e.g. Intel 8008

� Core memory

� 1103 1Kx1 DRAM chips

� Punch cards, paper tapes, 

teletypes, selectrics
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What Will Be Different

� Moore’s Law will have flatlined

� Nano-scale atomic level devices

� Assuming we solve lithography 

problem

� Local clock rates ~100 GHz

� Fastest today is > 700 GHz

� Local actions strongly 

preferential to global actions

� Non-conventional technologies 

may be employed

� Optical

� Quantum dots

� Rapid Single Flux Quantum 

(RSFQ) gates

JJ1 JJ2

L1



October 12, 2004 Thomas Sterling - Caltech & JPL 7

What we will need

� 1 nano-watt per Megaflops

� Energy received from Tau

Ceti (per m2)

� Approximately 1 square 

meter for 1 Zetaflops ALUs

� 10 billion execution sites

� > 10 billion-way parallelism

� Including memory and 

communications: 2000 m2

� 3-D packaging (4m)3

� Global latency of ~ 10,000 

cycles

� Including average latency, => 

1 trillion-way parallelism
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Parcel Simulation Latency Hiding 
Experiment
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Latency Hiding with Parcels
with respect to System Diameter in cycles

Sensitivity to Remote Latency and Remote Access Fraction

16 Nodes

deg_parallelism in RED (pending parcels @ t=0 per node)

0.1

1

10

100

1000

64 25
6
10
24
40
96

16
38
4 64 25

6
10
24
40
96

16
38
4 64 25

6
10
24
40
96

16
38
4 64 25

6
10
24
40
96

16
38
4 64 25

6
10
24
40
96

16
38
4 64 25

6
10
24
40
96

16
38
4

Remote Memory Latency (cycles) 

T
o
ta
l 
tr
a
n
s
a
c
ti
o
n
a
l 
w
o
rk
 d
o
n
e
/T
o
ta
l 
p
ro
c
e
s
s
 w
o
rk
 d
o
n
e

1/4%

1/2%

1%

2%

4%

16

4

1

64256

2



October 12, 2004 Thomas Sterling - Caltech & JPL 10

Latency Hiding with Parcels
Idle Time with respect to Degree of Parallelism
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Architecture Innovation

� Extreme memory bandwidth

� Active latency hiding

� Extreme parallelism

� Message-driven split-transaction computations (parcels)

� PIM

� e.g. Kogge, Draper, Sterling, …

� Very high memory bandwidth

� Lower memory latency (on chip)

� Higher execution parallelism (banks and row-wide)

� Streaming

� Dally, Keckler, …

� Very high functional parallelism

� Low latency (between functional units)

� Higher execution parallelism (high ALU density)



October 12, 2004 Thomas Sterling - Caltech & JPL 12

Continuum Computer Architecture

� Merges state, logic, and communication in single 

building block

� Parcel driven computation

� Fine grain split transaction computing

� Move data through vectors of instructions in store

� Move instruction stream through vector of  data

� Gather-scatter an intrinsic

� Very efficient Futures for produces-multi-consumer computing

� Combines strengths of PIM and Streaming

� All register architecture (fully associative)

� Functional units within a cycle of neighbors

� Extreme parallelism

� Intrinsic latency hiding
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Conclusions

� Zettaflops at nano-scale technology is possible

� Size requirements tolerable

� But packaging is a challenge;

� Latency challenge does not sink the idea

� Major obstacles

� Power

� Latency

� Parallelism

� Reliability

� Programming

� Architecture can address many of these

� Continuum Computing Architecture

� Combines advantages of PIM and streaming

� Strong candidate for future Zetaflops computer
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