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Linpack Zettaflops in 2032
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Architectures / Systems
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The Way We Were: 1974

+ |IBM 370 market mainstream
= Approx. 1 Mflops
¢ DEC PDP-11 geeks delight

¢+ Seymour Cray started
working on Cray-1
= Approx. 100 Mflops

¢ 2nd generation
microprocessor

= e.g. Intel 8008
¢+ Core memory
+ 1103 1Kx1 DRAM chips

¢+ Punch cards, paper tapes,
teletypes, selectrics

October 12, 2004 Thomas Sterling - Caltech & JPL )



What Will Be Different

+ Moore’s Law will have flatlined

+ Nano-scale atomic level devices

=  Assuming we solve lithography
problem

¢ Local clock rates ~100 GHz
m Fastest today is > 700 GHz

¢ Local actions strongly
preferential to global actions

+ Non-conventional technologies
may be employed
= Optical
= Quantum dots

= Rapid Single Flux Quantum
(RSFQ) gates
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What we will need

+ 1 nano-watt per Megaflops

= Energy received from Tau
Ceti (per m2)

¢+ Approximately 1 square Tau Cet
meter for 1 Zetaflops ALUs

= 10 billion execution sites
¢+ > 10 billion-way parallelism

¢ Including memory and
communications: 2000 m?

+ 3-D packaging (4m)?
¢ Global latency of ~ 10,000 oo
cycles

¢ |ncluding average latency, =>
1 trillion-way parallelism
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Parcel Simulation Latency Hiding
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Latency Hiding with Parcels
with respect to System Diameter in cycles

Sensitivity to Remote Latency and Remote Access Fraction
16 Nodes
deg_parallelism in RED (pending parcels @ t=0 per node)
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Latency Hiding with Parcels

Idle Time with respect to Degree of Parallelism
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Architecture Innovation

Extreme memory bandwidth

Active latency hiding

Extreme parallelism

Message-driven split-transaction computations (parcels)

PIM
= e.g. Kogge, Draper, Sterling, ...
= Very high memory bandwidth
= Lower memory latency (on chip)
= Higher execution parallelism (banks and row-wide)

¢ Streaming
= Dally, Keckler, ...
= Very high functional parallelism
= Low latency (between functional units)
= Higher execution parallelism (high ALU density)

* 6 6 o o
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Continuum Computer Architecture

+ Merges state, logic, and communication in single
building block

+ Parcel driven computation
= Fine grain split transaction computing
= Move data through vectors of instructions in store
= Move instruction stream through vector of data
s Gather-scatter an intrinsic
= Very efficient Futures for produces-multi-consumer computing

¢+ Combines strengths of PIM and Streaming
= All register architecture (fully associative)
= Functional units within a cycle of neighbors
= Extreme parallelism
= Intrinsic latency hiding
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Continuum Computer

Architecture for

Exaflops Computation

. THE ultimare computers in our long-term future will deliver exaflops-scale

. performance (or greater) and will look very different from today’s micro-
THOMAS STERLING  processors and massively parallel computers. Ironically, however, their alien
© structures and operational behavior can be inferred from the same technol-

ogy trends driving development of today’s conventional computing systems.

A vision of future computer
architectures that are direct
extrapolations of current trends is
easily inspired by the explosive
growth of today’s computer per-
formance, price-performance, and
applications (driven by Moore's
Law for device technology), as
well as the more dramatic para-
digm shifts broughc on by the
Internet, the Web, and grids. Yet
an examination of these trends
also reveals the possibility of
something quite different in how
we'll organize, design, and fabri-
cate our largest computers in the
future. They even set the stage for
a revolution in computer architec-
ture that may displace the venera-
ble and highly successful “von
Neumann model” and its pre-
dominance over the past 50 years.

One class of innovative com-
puting system being explored
today by computer scientists at
the California Institute of Tech-
nology’s Center for Advanced

Computing Research is the con-
tinuum computer architecture
(CCA), an ultra-fine-grain uni-
form structure that approximates
a continuous 3D execution
medium enabled through next-
generation submicron logic
devices. Future computers—
whether major exaflops engines
used to design and simulate
everything from controlled fusion
reactors to rapid-response medi-
cines, to compact low-power
robot brains for autonomous con-
trol of spacecraft, airplanes, auto-
mobiles, and homes, 10
embedded smartware in our
clothes and bodies—may look less
like today’s microprocessors and
much more like CCAs.

Several concurrent trends in
semiconductor and other tech-
nologies will force a rethinking of
the physical structure and logical
operarion of parallel computer
systems. Lithographic feature size
will be driven below 0.05 microns

T8 March 2001/Vol. 44,No.3 COMMUNICATIONS OF THE ACM
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by 2010, increasing the number
of devices per unit area by at least
an order of magnitude by today’s
standards. Combined with

increases in chip area, perhaps
afe inteor:
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Conclusions

+ Zettaflops at nano-scale technology is possible
= Size requirements tolerable
e But packaging is a challenge;
= Latency challenge does not sink the idea

+ Major obstacles
= Power
= Latency
= Parallelism
= Reliability
= Programming

+ Architecture can address many of these

¢ Continuum Computing Architecture
= Combines advantages of PIM and streaming
= Strong candidate for future Zetaflops computer
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