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Converging problems

• How can we make the most powerful computer?
– Binary

– Most processing elements/cm2 – high functional density

– � molecules as devices

• How can we solve the “heat problem”?
– Power dissipation is limiter

– Understand the fundamentals of the issue

– Need to go beyond transistors

– Practical way to do “reversible computation”

There is an approach than may solve both these          
problems and provide a path forward: QCA
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Outline of presentation

• Shrinking electronics & QCA

• The heat problem & QCA

• A path forward 
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How is information 

represented physically?
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on=“1”

Zuse’s paradigm
• Konrad Zuse (1941) Z3 machine

– Use binary numbers to encode 
information

– Represent binary digits as on/off state of 
a  current switch Telephone

relay Z3 Adder

The flow through one switch 

turns another on or off.

Electromechanical

relay

Exponential down-scaling

Vacuum tubes Solid-state transistors CMOS IC

off=“0”



LACSI 10/2004Center for Nano Science and Technology

University of Notre Dame

Problems shrinking the current-switch

To reach the single-molecule level, a new approach to 

representing information is required.

Electromechanical

relay

Vacuum tubes Solid-state transistors CMOS IC Molecules

New 

idea

Valve shrinks also – hard 

to get good on/off

Current becomes small -

resistance becomes high 

Hard to turn next switch

Charge becomes quantized

Power dissipation 

threatens to melt 

the chip.
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New paradigm: Quantum-dot 

Cellular Automata

Revolutionary, not incremental, approach

Beyond transistors – requires rethinking circuits and 
architectures

Use molecules, not as current switches, but as 
structured charge containers.

Represent information with molecular charge 
configuration.

Zuse’s paradigm

• Binary

• Current switch�
�

• charge configuration�
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Quantum-dot Cellular Automata

Represent binary information by 

charge configuration

A cell with 4 dots

Tunneling between dots

Polarization P = +1

Bit value “1”

2 extra electrons

Polarization P = -1

Bit value “0”

Bistable, nonlinear cell-cell 

response

Restoration of  signal levels

Robustness against disorder

cell1 cell2

cell1 cell2

Cell-cell response function

Neighboring cells tend to align.

Coulombic coupling
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0 01 1

01 10

A

B

C

Out

Binary wire

Inverter
Majority gate

M
A

B

C

Programmable 2-input 

AND or OR gate.

QCA devices
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QCA single-bit full adder

Hierarchical layout and design are possible.

result of SC-HF calculation  

with site model 
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QCA devices exist

“dot” = metal island

electrometers

70-300 mK

Al/AlOx on 

SiO2

Metal-dot QCA implementation

Greg Snider, Alexei Orlov, and Gary Bernstein



LACSI 10/2004Center for Nano Science and Technology

University of Notre Dame

Metal-dot QCA cells and devices

• Majority Gate

M
A
B
C

Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, 
Science 284, pp. 289-291 (1999).
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Clocked QCA cells

“1”“0” “null”

• Middle dot adds “null” state to cells.

• Applied voltage (clock) alters energy of middle 

dots and forces charge into null or “active” dots.

• Energy from clock provides power gain which 

restores weakened signals.
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+

(0,0,0) neutral

Three-dot QCA latch operation

(0,0,0) →→→→ (0,-1,1) switch to “1”

-VCLK-VIN +VINVCLK=0

(0,-1,1) storage of “1”               (0,0,0) ←←←← (0,-1,1) back to null

D1 D3

D2

-VIN=0 +VIN=0

• Clock supplies energy, input defines direction of switching

• Three states of the QCA latch:  “0” , “1”  and “null”
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Clocking in QCA

0 1

0

e
ne

rg
y

xClock

Small Input Applied

Clock Applied

Input Removed

Signal
is amplified

0

Keyes and Landauer, IBM Journal of Res. Dev. 14, 152, 1970
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QCA Shift Register
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QCA Shift Register

Gtop

Gbot

electrometers

V
IN
+

V
IN
–

V
CLK1 V

CLK2

D1 D4
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Interactive Demos

• link
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Power gain

Power gain is essential for any practical digital 

technology.

– Lacking in cross-bar and lookup-table proposals

– Lacking in randomly self-assembled circuits

– Clocked QCA has power gain. 

• Theory: Timler and Lent, J. Appl. Phys. 91, 823 (2002).

• Experiment: Kummamuru et al., Appl. Phys. Lett. 81, 

1332 (2002).

Power gain > 3 has been measured.
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• Metal-dot QCA

– First QCA devices

– Clocked QCA

• Molecular QCA

– Molecular electronics

– Aviram molecules

– Fe-Ru

– 4-dot Ferrocene molecules

• Implications for architecture

QCA implementations

�
�

�
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From metal-dot to molecular QCA

“dot” = metal island
70 mK

Mixed valence compounds

“dot” = redox center

room temperature+

Metal tunnel junctions

Key strategy: use nonbonding orbitals (π or d) to act as dots.
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Aviram molecule: simple model system

Aviram JACS 110, 5687 (1988)
Hush et al. JACS 112, 4192 (1990)

Use allyl groups as dots

1,4-diallyl butane radical cation
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Charge configuration represents bit

“1”

isopotential
surface

“0”

Gaussian 98 UHF/STO-3G

HOMO

Lent, Isaksen, Lieberman
Journal of American Chemical Society. 
125, 1056 (2003)
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Molecular wire

“0” “0”

“1” “1”

Quantum chemistry calculation shows line acting as binary wire.

Extended Hückel (Gaussian 03)
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Experiments on molecular double-dot

Thomas Fehlner et al. 
(Notre Dame chemistry group)
Journal of American Chemical Society,
125:15250, 2003

Ru Ru

Fe Fe

“0” “1”

Fe group and Ru group act as two unequal quantum dots. 

trans-Ru-(dppm)2(C≡CFc)(NCCH2CH2NH2) dication
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Surface attachment and orientation

N

Si Si

3.8 Α

2.4 Α
106o

PHENYL GROUPS
“TOUCHING” SILICON

Molecule is covalent bonded to Si and oriented vertically by “struts.”

Si(111)

molecule
Si-N bonds

“struts”



LACSI 10/2004Center for Nano Science and Technology

University of Notre Dame

Charge configurations

UHF/STO-3G/LANL2DZ

“1”“0”

Bistable charge configuration.

Ru

Fe

Ru

Fe



LACSI 10/2004Center for Nano Science and Technology

University of Notre Dame

Switching by an applied field

Fe
Ru

Fe
Ru

Fe Ru

Mobile electron driven by electric 
field, the effect of counterions
shift the response function.

Click-clack correspond to:

Gaussian
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When equalized, capacitance peaks.

Applied field equalizes the energy of the two dots

Fe
Ru Fe Ru Fe

Ru

Si

Hg

Fe

Ru

Si

Hg

Fe

Ru

Si

Hg

Fe

Ru

a
c
 C
a
p
a
c
it
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n
c
e

voltage

excited stateswitching

E
n
e
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y

ground state

applied

potential

Measurement of molecular bistability

layer of molecules
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Molecule-molecule interaction

Can one molecule switch another molecule?
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Switching by a neighboring molecule

The distance between
Neighboring molecules:
1 nm

External electric field:
1.2 V/nm

All counterions attach to
the substrate

One  molecule can switch a neighboring molecule.
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4-dot molecule

Each ferrocene acts as a quantum dot, the Co group connects 4 dots.

Fehlner et al
(Notre Dame chemistry group)
Journal of American Chemical Society

125:7522, 2003
5.8 Å
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4-dot molecule

Self-assembly of 4-dot cell—no legs or struts.
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Bistable configurations

“0” “1”

Guassian-98 UHF/STO-3G/LANL2DZ
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Can one molecule switch the other ?
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Switching molecule by a neighboring molecule

Coulomb interaction is sufficient to couple molecular states.
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Majority gate

A

B

C

Output

The output cell assumes the value 
of the majority of the input cells.
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Calculated response

Majority gate operation confirmed (in theory).
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Molecular 3-dot cell

For the molecular cation, a hole occupies one of three dots.

cation
neutral 

radical

+

neutral 

radical

+

Three allyl groups form 

“dots” on alkyl bridge.
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Charge configuration represents bit

isopotential

surfaces

“1”“null”

+

“0”
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Clocking field

“1”

“0”

null

E

E

E

or

Use local electric field to switch molecule between active and null states.

active

“null”
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µdriver (eÅ)

µ
m
ol
ec
u
le
 (
eÅ

)

“null”

Clocking field alters response 

function

µ
m
ol
ec
u
le
 (
eÅ

)

µdriver (eÅ)

“1”

“0”

E

• Clocking field positive (or zero)

• Positive charge in top dots

• Cell is active – nonlinear 

response to input

• Clocking field negative

• Positive charge in bottom dot

• Cell is inactive – no response 

to input
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Clocked Molecular QCA

QCA 
layer

lockednullactive

Active domains can be moved across surface by applying 

a time-varying voltage to the clocking wires.

Hennessey and Lent, JVST (2001)
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Clocking field: linear motion 
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Molecular circuits and clocking wires

Plan view of buried 

clocking wires

region where perpendicular field is 

high pushing cells into active state
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Molecular circuits and clocking wires

molecular circuits are on a much 

smaller length scale (10 –100x)
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Molecular circuits and clocking wires

First: zoom in to molecular level
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Field-clocking of QCA wire: 

shift-register
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Computational wave: majority gate
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Computational wave: adder back-end
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XOR Gate
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Permuter
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Triple-Wide Wire

Advantages: easier fabrication, works at higher temperatures
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Wider QCA wires

Redundancy results in defect tolerance.
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Molecular circuits and clocking wires

Next: zoom out to dataflow level



LACSI 10/2004Center for Nano Science and Technology

University of Notre Dame

Clocking field: propagation + loop 
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Universal floorplan
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Crossing signals in the plane
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Multiple crossovers
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Interdisciplinary challenge

• Electrical Engineering

• Computer Science

• Chemistry

• Physics
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Convergence

Molecular electronics

Power dissipation

Quantum-dot cellular 

automata (QCA)

smaller

cooler
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Transistors at molecular densities

Suppose in each clock cycle a single electron 

moves from power supply (1V) to ground.

Vdd
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Transistors at molecular densities

Suppose in each clock cycle a single electron 

moves from power supply (1V) to ground.

Vdd

1011 devices/cm21012 devices/cm21013 devices/cm21014 devices/cm2Frequency (Hz)

0.0160.161.616106

0.161.616160107

1.6161601600108

16160160016,000109

1601,60016,000160,0001010

1,60016,000160,0001,600,0001011

16,000160,0001,600,00016,000,0001012

Power dissipation (Watts/cm2)

ITRS roadmap: 

9nm gate length, 109 logic transistors/cm2@ 3x1010 Hz for 2016
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Physics of computation

• Is there a fundamental lower limit on energy 

dissipation per bit?

• What is the distinguishability criterion in thermal 

environment?
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Landauer

Question: Is there a fundamental lower limit to the 

amount of energy that must be dissipated to 

compute a bit?

Answer: No.

Question: Isn’t it kBT log(2)?

Answer: No, it isn’t.

There is no fundamental lower limit on the amount of 

energy that must be dissipated to compute a bit.

Landauer (1961)
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• Maxwell’s demon (1875) – by first measuring states, could 
perform reversible processes to lower entropy

• Szilard (1929), Brillouin (1962): measurement causes
kBT log(2) dissipation per bit.

• Landauer (1961,1970): only erasure of information must cause 
dissipation of kBT log(2) per bit.

• Bennett (1982): full computation can be done without erasure.

logical reversibility    � physical reversibility

See Timler & Lent “Maxwell’s demon and quantum-dot cellular automata” 
JAP (2003).

Minimum energy for computation
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Physical reversibility � logical 

reversibility

Entropy S=kB log(W)

time

c
o
n
fi
g
u
ra
ti
o
n

W=2 W=1

time

c
o
n
fi
g
u
ra
ti
o
n

W=2 W=2
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Boltzmann’s tombstone
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Physical reversibility � logical 

reversibility

Entropy S=kB log(W)
Total ΔS > 0. (2nd Law of Thermodynamics)

Reduction of entropy in system must be accompanied by transfer of 
entropy elsewhere.

Either:

1) information transfers to another system, or

2) free energy ΔF=TΔS=kBT log(2) transfers to environment.

time

c
o
n
fi
g
u
ra
ti
o
n

W=2 W=1

time

c
o
n
fi
g
u
ra
ti
o
n

W=2 W=2

ΔS=0 ΔS= -kB log(2)
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Physical reversibility � logical 

reversibility

Logical reversibility means that inputs are logically 
determined by outputs.

Logically reversible computation can be implemented by 
physically reversible processes.

Logically irreversible computation cannot be implemented 
by physically reversible process. Example: erasure.

time

c
o
n
fi
g
u
ra
ti
o
n

W=2 W=1

time

c
o
n
fi
g
u
ra
ti
o
n

W=2 W=2

ΔS=0 ΔS= -kB log(2)

reversible irreversible

1

0
null0

1

0

1
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QCA system considered

• Driver- provides input bit

• Demon cell (after Maxwell’s Demon)- measures and 
copies the polarization of the test cell

Test Cell Demon CellDriver
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Bit erasure
Erasure with copy to demonErasure without demon

Test Cell

Null

Test Cell Demon Cell

Bit=1 Bit=1

Lower clock

Bit erased

Copy bit

to demon

Lower clock

‘1’

‘1’

‘1’ ‘1’

Null‘1’

Null
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Bit erasure in a QCA cell
Erasure with copy to demon

Test Cell

Erasure without demon
Test Cell Demon Cell

Bit=1 Bit=1

Lower clock

Bit erased

Copy bit

to demon

Lower clock
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Erasure dynamics without demon cell

Test CellDriver
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Without a demon cell, erasing the bit results in 

considerable energy dissipation. 
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Erasure dynamics with copy to the demon cell

Erasing the bit with a copy to the demon cell, results in very little energy 

dissipation.
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Ediss 
without demon

)2log(TkB

Ediss 
with demon

)(sTc

E
n
e
rg
y
/E
k

Ek=0.5 eV

T=60K

The demon cell makes the erasure reversible, so energy loss can be 

much less than kBT log(2).

Energy loss for erasing a single bit
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Demon to the right: a shift register
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QCA gate: reversible/irreversible

E
n
e
rg
y
/E

k

kBT log(2)

reversibleirreversible

Direct time-dependent calculations shows: Logically 

reversible circuit can dissipate much less than kBT log(2). 
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Bennett clocking of QCA

Output is used to erase intermediate results.
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Bennett clocking of QCA

For QCA no change in layout is required.
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Landauer clocking of QCA
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QCA gate: reversible/irreversible

Direct time-dependent calculations shows: Logically 

reversible circuit can dissipate much less than kBT log(2). 
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QCA gate: reversible/irreversible

With QCA, reversible computation adds no circuit 

complexity. Simply redo clock timing where desired.  
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Distinguishability

Don’t you need to dissipate more than kBT log(2) 

to be able to distinguish a bit in a thermal 

environment?
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Energy flow in QCA cells



LACSI 10/2004Center for Nano Science and Technology

University of Notre Dame

Energy flow in QCA cells

kBT log(2)

Ein Eout Eclock Ediss

E
/E
k

0.6

0.5

0.4

0.3

0.2

0.1

0

Ein Eout

Eclock

Ediss

Switching events in QCA cells can dissipate much less than kBT log(2) 
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Energy flow in QCA cells

Ein Eout Eclock Ediss

E
/E
k

0.6

0.5

0.4

0.3

0.2

0.1

0

Ein Eout

Eclock

Ediss

Distinguishability requires Ein> kBT log(2). Ediss can be much less.

kBT log(2)
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Distinguishability

• Information is physical

• Signal energy must be greater than kBT log(2) for 

next stage to be able to distinguish it from thermal 

fluctuation.  (a “read” criterion)

• The signal energy need not be dissipated.

• What to do with it?

– Bennett: Never throw away information. Reverse 

computation to return all energy to inputs.

– Modestly reversible computation. Don’t erase information 

needlessly.
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Double well represents bit

w

Eb

a

“0”

“1”
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Bit switching

Thermal hop over barrier

dissipates no energy.

Tunneling through barrier

dissipates no energy.

Note: Traversing an energy barrier dissipates no energy.
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Dissipation: falling down hill

Energy dissipation is determined by energy difference 
between initial and final state – not barrier height.
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What’s wrong with transistors?

Net transport of charge from  Vdd to ground (falling downhill).

Energy dissipated each cycle is at least QVdd.

Energy is dissipated even for logically reversible operations.

Vdd
Vdd

gnd

Vdd

gnd

Q

Q
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Apply input biasRemove input bias

Raise clocking potential

QCA adiabatic switching

Keep system always very close to  ground state.

Don’t let it fall downhill. 
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Breakdown of adiabaticity

If clock moves up too fast, system cannot get to ground 

state without some dissipation.
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Ediss 
without demon
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The demon cell makes the erasure reversible, so energy loss can be 

much less than kBT log(2).

Energy loss for erasing a single bit
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QCA Power Dissipation

QCA architectures could operate at densities 1012 devices/cm2 and 

100GHz without melting the chip.

QCA Operation Region

100 W/cm2

@1012 devices/cm2
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Doesn’t adiabatic mean slow?

Slow compared to what?

– For conventional circuits, RC

– For molecular QCA, slow compared to electron switching 

from one side of a molecule to the other

~ ωB = 4 x 10 
16 Hz  → THz operation is feasible
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Power dissipation at molecular densities

• Cannot afford to dump charge to ground.

• Must use some version of adiabatic switching.

– Keep system always near ground state (e.g. clocked QCA).

– No fundamental lower limit on energy dissipation per bit 

provided information is not erased. (Landauer)

– Must dissipate at least kBT log(2) for each erasure. 

• Moderate approach: erase as needed, manage power 

budget. “Landauer clocking”

• More radical approach: partition into blocks and only 

erase inputs to each block. “Bennett clocking”
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Convergence

Molecular electronics

Power dissipation

Quantum-dot cellular 

automata (QCA)

smaller

cooler
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Zettaflops

1021 flops� 1025 ops 

1 nm2 devices (includes surrounding groups)

1014 devices/cm2                 derate for power & redundancy

1012 bits on the move/cm2

1012 bits on the move/cm2 * 1012 Hz= 1024 ops/cm2

10 cm2 chip � 1025 ops
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Conclusions

• QCA offers path to limits of downscaling – molecular 

computing.

• Clocked QCA can operate at lower limits of power 

dissipation.

– Only dissipate when information is erased

– Tuned Bennett clocking: hold intermediate results in place 

when absolute lowest power dissipation is required

• A clear path, but much research remains to be done.

– Chemistry, physics, electrical engineering, computer science

Thanks for your attention.
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