
Software for Exaflops
Computing

William Gropp
Mathematics and Computer Science

Division
www.mcs.anl.gov/~gropp

University of Chicago Department of Energy2

Why New Programming
Approaches?

• Massive Parallelism

• Different Hardware

• Frequent Faults

• Higher Productivity

♦Whorfian hypothesis

• Strong form: Language controls both
thought and behavior

8Rejected by linguistics community

University of Chicago Department of Energy3

We Haven’t Always Been Digital

University of Chicago Department of Energy4

Historical Context

• Pasadena workshop (1992)

• PetaFlops workshops (1994—)

• Gloom and doom

• Success!

♦But we won’t admit it

University of Chicago Department of Energy5

Quotes from “System Software and Tools for
High Performance Computing Environments”

• “The strongest desire expressed by these users was simply to satisfy
the urgent need to get applications codes running on parallel
machines as quickly as possible”

• In a list of enabling technologies for mathematical software, “Parallel
prefix for arbitrary user-defined associative operations should be
supported. Conflicts between system and library (e.g., in message
types) should be automatically avoided.”
♦ Note that MPI-1 provided both

• “For many reasons recoverability mechanisms are important for both
batch and interactive systems.”
♦ Followed by a discussion of checkpointing

• Immediate Goals for Computing Environments:
♦ Parallel computer support environment
♦ Standards for same
♦ Standard for parallel I/O
♦ Standard for message passing on distributed memory machines

• “The single greatest hindrance to significant penetration of MPP
technology in scientific computing is the absence of common
programming interfaces across various parallel computing systems”

University of Chicago Department of Energy6

Quotes from “Enabling Technologies
for Petaflops Computing”:

• “The software for the current generation of 100 GF machines
is not adequate to be scaled to a TF…”

• “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”
♦ (estimated clock speed in 2004 — 700MHz

• “Software technology for MPP’s must evolve new ways to
design software that is portable across a wide variety of
computer architectures. Only then can the small but
important MPP sector of the computer hardware market
leverage the massive investment that is being applied to
commercial software for the business and commodity
computer market.”

• “To address the inadequate state of software productivity,
there is a need to develop language systems able to integrate
software components that use different paradigms and
language dialects.”

• (9 overlapping programming models, including shared
memory, message passing, data parallel, distributed shared
memory, functional programming, O-O programming, and
evolution of existing languages)

University of Chicago Department of Energy7

Is There A Problem?

• Many feel that programming for
performance is too hard; there is a
productivity crisis

• And supporting new algorithms is too
difficult
♦ Either use new algorithm on slow hardware
(general CISC/RISC µprocessor)

♦ Or old algorithm on fast hardware
(vector/stream processor)

• But despite the gloom and doom, and
despite little organized effort to solve all
of these problems, we have applications
running at over 10 TF today.

University of Chicago Department of Energy8

Contrarian View

• Algorithms are an expression of the
mathematics
♦ Need new algorithms

♦ Need better ways to express those algorithms that
match hardware realities
• Parallelism is only one of the easier problems

• Algorithms must match what the hardware can do well
— this is where languages may need to change (Whorf)

• Are new languages really necessary?
♦ If so, how should they be evaluated?

• The must address the hard problems, not just the easy
ones

♦ If not, how do we solve the problems we face?

• To see the pros and cons of new languages,
lets look at some examples…

University of Chicago Department of Energy9

Consider These Five Examples

• Three Mesh Problems

♦Regular mesh

♦ Irregular mesh

♦C-mesh

• Indirect access

• Broadcast to all processes and
allreduce among all processes

University of Chicago Department of Energy10

Regular Mesh Codes

• Classic example
of what is wrong
with MPI

♦ Some examples
follow, taken from
CRPC Parallel
Computing
Handbook and ZPL
web site, of mesh
sweeps

University of Chicago Department of Energy11

Uniprocessor Sweep

do k=1, maxiter

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

u = unew

enddo

University of Chicago Department of Energy12

MPI Sweep

do k=1, maxiter
! Send down, recv up
call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &
MPI_COMM_WORLD, status, ierr)

! Send up, recv down
call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&
MPI_COMM_WORLD, status, ierr)

do j=js, je
do i=1, n-1
unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))
enddo

enddo
u = unew

enddo

And the more scalable 2-d decomposition is even messier

University of Chicago Department of Energy13

HPF Sweep

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew WITH u

!HPF$ ALIGN f WITH u

do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * &

(u(2:n,1:n-1) + u(0:n-2,1:n-1) + &

u(1:n-1,2:n) + u(1:n-1,0:n-2) - &

h * h * f(1:n-1,1:n-1))

u = unew

enddo

University of Chicago Department of Energy14

OpenMP Sweep

!$omp parallel

!$omp do

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

!$omp enddo

University of Chicago Department of Energy15

ZPL Sweep

region

R = [0..n+1,0..n+1];

direction

N=[-1,0]; S = [1,0]; W=[0,-1]; E=[0,1];

Var

u : [BigR] real;

[R] repeat

u:=0.25*(u@n + u@e + u@s + u@w)-h*h*f;

Until (…convergence…);

(Roughly, since I’m not a ZPL programmer)

University of Chicago Department of Energy16

Other Solutions

• Similarly nice code for this
example can be prepared in other
“global name space” languages,
such as UPC and CAF (CoArray
Fortran)

♦User is responsible for more details
than in the examples shown, but
code is still simpler than MPI code

University of Chicago Department of Energy17

Lessons

• Strengths of non-MPI solutions
♦ Data decomposition done for the
programmer

♦ No “action at a distance”

• So why does anyone use MPI?
♦ Performance

♦ Completeness

♦ Ubiquity
• Does your laptop have MPI on it? Why not?

• But more than that…

University of Chicago Department of Energy18

Why Not Always Use HPF?

• Performance!
♦ From “A Comparison of
PETSC Library and HPF
Implementations of an
Archetypal PDE
Computation” (M.
Ehtesham Hayder, David
E. Keyes, and Piyush
Mehrotra)

♦ PETSc (Library using
MPI) performance
double HPF

• Maybe there’s something
to explicit management
of the data
decomposition…

University of Chicago Department of Energy19

Not All Codes Are
Completely Regular

• Examples:
♦ Adaptive Mesh refinement

• How does one process know what data to access on
another process?

8Particularly as mesh points are dynamically allocated

• (You could argue for fine-grain shared/distributed
memory, but performance cost is an unsolved problem
in general)

• Libraries exist (in MPI), e.g., Chombo, KeLP (and
successors)

♦ Unstructured mesh codes
• More challenging to write in any language
• Support for abstractions like index sets can help, but
only a little

• MPI codes are successful here …

University of Chicago Department of Energy20

FUN3d Characteristics

• Tetrahedral vertex-centered unstructured grid
code developed by W. K. Anderson (NASA
LaRC) for steady compressible and
incompressible Euler and Navier-Stokes
equations (with one-equation turbulence
modeling)

• Won Gordon Bell Prize in 1999

• Uses MPI for parallelism

• Application contains ZERO explicit lines of MPI
♦ All MPI within the PETSc library

University of Chicago Department of Energy21

Fun3d Performance

Performance
close to
“achievable peak”
based on memory
bandwidth

University of Chicago Department of Energy22

Another Example: Regular
Grids—But With a Twist

• “C Grids” common for
certain geometries

• Communication pattern is
regular but not part of
“mesh” or “matrix” oriented
languages
♦ |i-n/2|>L, use one rule,
otherwise, use a different
rule

♦ No longer transparent in
HPF or ZPL

♦ Convenience features are
brittle
• Great when they match
what you want

• But frustrating when they
don’t

♦ (I haven’t even started on
staggered meshes or
mortar element methods or
1-irregular grids or LUMR
…)

University of Chicago Department of Energy23

Irregular Access

• For j=1, zillion
table[f(j)] ^= intable[f(j)]

• Table, intable are “global” arrays (distributed
across all processes)

• Seems simple enough
♦ ^ is XOR, which is associative and commutative, so
order of evaluation is irrelevant

• Core of the GUPS (also called TableToy)
example
♦ Two versions: MPI and shared memory

♦ MPI code is much more complicated

University of Chicago Department of Energy24

But…

• MPI version produces the same answer every
time

• Shared/Distributed memory version does not
♦ Race conditions are present
♦ Benchmark is from a problem domain where getting
the same answer every time is not required

♦ Scientific simulation often does not have this luxury

• You can make the shared memory version
produce the same answer every time, but
♦ You either need fine-grain locking

• In software, costly in time, may reduce effective
parallelism

• In hardware, with sophisticated remote atomic
operations (such as a remote compare and swap), but
costly in $

♦ Or you can aggregate operations
• Code starts looking like MPI version …

University of Chicago Department of Energy25

Broadcast And Allreduce

• Simple in MPI:
♦ MPI_Bcast, MPI_Allreduce

• Simple in shared memory (?)
♦ do i=1,n

a(i) = b(i) ! B (shared) broadcast to A
enddo

♦ do i=1,n
sum = sum + A(i) ! A (shared) reduced to sum

enddo

• But wait — how well would those perform?
♦ Poorly. Very Poorly (much published work in shared-
memory literature)

♦ Optimizing these operations is not easy (e.g., see papers
at EuroPVMMPI03-04)

• Unrealistic to expect a compiler to come up with these
algorithms
♦ E.g., OpenMP admits this and contains a special operation
for scalar reductions (OpenMP v2 adds vector reductions)

University of Chicago Department of Energy26

Is Ease of Use the Overriding
Goal?

• MPI often described as “the assembly
language of parallel programming”

• C and Fortran have been described as
“portable assembly languages”
♦ (That’s company MPI is proud to keep)

• Ease of use is important. But
completeness is more important.
♦ Don’t force users to switch to a different
approach as their application evolves
• Remember the mesh examples

University of Chicago Department of Energy27

Conclusions:
Lessons From MPI

• A successful parallel programming
model must enable more than the
simple problems
♦ It is nice that those are easy, but those
weren’t that hard to begin with

• Scalability is essential
♦ Why bother with limited parallelism?

♦ Just wait a few months for the next
generation of hardware

• Performance is equally important
♦ But not at the cost of the other items

University of Chicago Department of Energy28

More Lessons

• A general programming model for high-performance
technical computing must address many issues to
succeed, including:

• Completeness
♦ Support the evolution of applications

• Simplicity
♦ Focus on users not implementors

♦ Symmetry reduces users burden

• Portability rides the hardware wave
♦ Sacrifice only if the advantage is huge and persistent

♦ Competitive performance and elegant design is not enough

• Composability rides the software wave
♦ Leverage improvements in compilers, runtimes, algorithms

♦ Matches hierarchical nature of systems

University of Chicago Department of Energy29

Directions For Future
Programming Models

• Enabling Evolution
♦ Transformations to legacy code

• We already need this for memory locality, atomicity

• Adding better support for detecting and recovering
from faults (e.g., independent confirmation of invarient
combined with parallel-I/O-enabled, user-directed
checkpoints)

• New ways of thinking
♦ Different operators (e.g., chemotaxis-like
programming for high-fault situations)

♦ Probabilistic programming (and results)

• “Small scale” ultracomputing
♦ Same technology that gives us exaflops may
(should!) give us deskside petaflops

♦ Interactive ultracomputing

University of Chicago Department of Energy30

Improving Parallel Programming

• How can we make the programming of real
applications easier?

• Problems with the Message-Passing Model
♦ User’s responsibility for data decomposition

♦ “Action at a distance”
• Matching sends and receives

• Remote memory access

♦ Performance costs of a library (no compile-time
optimizations)

♦ Need to choose a particular set of calls to match the
hardware

• In summary, the lack of abstractions that
match the applications

University of Chicago Department of Energy31

Challenges

• Must avoid the traps:
♦ The challenge is not to make easy programs easier. The
challenge is to make hard programs possible.

♦ We need a “well-posedness” concept for programming tasks
• Small changes in the requirements should only require small changes
in the code

• Rarely a property of “high productivity” languages
8 Abstractions that make easy programs easier don’t solve the problem

♦ Latency hiding is not the same as low latency
• Need “Support for aggregate operations on large collections”

• An even harder challenge: make it hard to write incorrect
programs.
♦ OpenMP is not a step in the (entirely) right direction

♦ In general, current shared memory programming models are very
dangerous.
• They also perform action at a distance

• They require a kind of user-managed data decomposition to preserve
performance without the cost of locks/memory atomic operations

♦ Deterministic algorithms should have provably deterministic
implementations

University of Chicago Department of Energy32

Manual Decomposition of Data
Structures

• Trick!
♦ This is from a paper on dense matrix tiling for uniprocessors!

• This suggests that managing data decompositions is a
common problem for real machines, whether they are parallel
or not
♦ Not just an artifact of MPI-style programming
♦ Aiding programmers in data structure decomposition is an
important part of solving the productivity puzzle

University of Chicago Department of Energy33

Some Questions for a Vendor

1. Do you have a optimized DGEMM?

♦ Did you do it by hand?

♦ Did you use ATLAS?

♦ Should users choose it over the reference
implementation from netlib?

2. Do you have an optimizing Fortran
compiler

♦ Is it effective?

• Aren’t the answers to 1 and 2
incompatible?

University of Chicago Department of Energy34

From Atlas

Compiler

Hand-tuned

Parallelizing Compilers Are
Not the Answer

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

University of Chicago Department of Energy35

What is Needed To Achieve Real
High Productivity Programming

• Managing Decompositions

♦ Necessary for both parallel and uniprocessor applications

♦ Many levels must be managed

♦ Strong dependence on problem domain (e.g., halos, load-
balanced decompositions, dynamic vs. static)

• Possible approaches

♦ Language-based

• Limited by predefined decompositions

8 Some are more powerful than others; Divacon provided a built-in
divided and conquer

♦ Library-based

• Overhead of library (incl. lack of compile-time optimizations),
tradeoffs between number of routines, performance, and
generality

♦ Domain-specific languages …

University of Chicago Department of Energy36

Domain-specific languages

• A possible solution, particularly when mixed with adaptable
runtimes

• Exploit composition of software (e.g., work with existing
compilers, don’t try to duplicate/replace them)

• Example: mesh handling

♦ Standard rules can define mesh

• Including “new” meshes, such as C-grids

♦ Alternate mappings easily applied (e.g., Morton orderings)

♦ Careful source-to-source methods can preserve human-readable
code

♦ In the longer term, debuggers could learn to handle programs
built with language composition (they already handle 2 languages
– assembly and C/Fortran/…)

• Provides a single “user abstraction” whose implementation
may use the composition of hierarchical models

♦ Also provides a good way to integrate performance engineering
into the application

University of Chicago Department of Energy37

Further Reading

• For a historical perspective (and a
reality check),
♦ “Enabling Technologies for Petaflops

Computing”, Thomas Sterling, Paul Messina,
and Paul H. Smith, MIT Press, 1995

♦ “System Software and Tools for High
Performance Computing Environments”,
edited by Paul Messina and Thomas
Sterling, SIAM, 1993

• For current thinking on possible
directions,
♦ “Report of the Workshop on High-

Productivity Programming Languages and
Models”, edited by Hans Zima, May 2004.

	Software for Exaflops Computing
	Why New Programming Approaches?
	We Haven’t Always Been Digital
	Historical Context
	Quotes from “System Software and Tools for High Performance Computing Environments”
	Quotes from “Enabling Technologies for Petaflops Computing”:
	Is There A Problem?
	Contrarian View
	Consider These Five Examples
	Regular Mesh Codes
	Uniprocessor Sweep
	MPI Sweep
	HPF Sweep
	OpenMP Sweep
	ZPL Sweep
	Other Solutions
	Lessons
	Why Not Always Use HPF?
	Not All Codes Are�Completely Regular
	FUN3d Characteristics
	Fun3d Performance
	Another Example: Regular Grids—But With a Twist
	Irregular Access
	But…
	Broadcast And Allreduce
	Is Ease of Use the Overriding Goal?
	Conclusions:�Lessons From MPI
	More Lessons
	Directions For Future Programming Models
	Improving Parallel Programming
	Challenges
	Manual Decomposition of Data Structures
	Some Questions for a Vendor
	Parallelizing Compilers Are �Not the Answer
	What is Needed To Achieve Real High Productivity Programming
	Domain-specific languages
	Further Reading

