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Why Is Today’s Supercomputing Hard

In Silicon: Little’s Tyranny

Concurrency =    Throughput

Latency

ILP: Getting tougher & tougher to increase

• Must extract from program

• Must support in H/W

Getting worse fast!!!!

(The Memory Wall)

Much less than peak

and degradingdegrading rapidly
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Why Is Zettaflops Even Harder?

• Silicon density: Sheer space taken up 
implies large distances & loooooong
latencies

• Silicon mindset:

– Processing logic “over here” 

– Memory “over there”

– And we add acres of high heat producing 
stuff to bridge the gap

• Thesis: how far can we go with a mindset
change
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This Talk: Climbing the Wall a 

“Different Way”

• Enabling concepts implementable in silicon:

– Processing In Memory 

• Lowering the wall, both bandwidth & latency

– Relentless Multi-threading with Light Weight 

Threads 

• to change number of times we must climb it

• to reduce the state we need to keep behind

• Finding architectures & execution models that 

support both

• With emphasis on “Highly Scalable” Systems
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“Processing-In-Memory”

• High density memory on same chip 

with high speed logic

• Very fast access from logic to memory

• Very high bandwidth

• ISA/microarchitecture designed to 

utilize high  bandwidth

• Tile with “memory+logic” nodes

Interconnect

incoming

parcels

outgoing

parcels

Parcel = Object Address + Method_name + Parameters

Performance Monitor

Wide Register File

Wide ALUs

Permutation Network

Thread State Package

Global Address Translation

Parcel Decode and Assembly

Broadcast Bus
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Sense Amplifiers/Latches

Column Multiplexing

Memory 

Array
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1 Column/Full Word Bit

“Wide Word” InterfaceAddress
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A Short History of PIM @ ND

EXECUBE
• 1st DRAM MIMD PIM

• 8-way hypercube

RTAIS
• FPGA ASAP prototype 

• Early multi-threading

PIM Fast
• PIM for Spacecraft 

• Parcels & Scalability

EXESPHERE
• 9 PIMs + FPGA interconnect 

• Place PIM in PC memory space

SRAM

ASAP

CPU Core

D

R

A

M

I/F

1

3

9

4

I/F

PCI Memory I/F

PIM Macros
• Fabbed in adv. Technologies

• Explore key layout issues

64 KB16b

CPU

Our IBM Origins

Cascade
• World’s First Trans-petaflop

• PIM-enhanced memory system

HTMT
• 2-level PIM for petaflop 

• Ultra-scalability

DIVA
• Multi-PIM memory module

• Model potential PIM programs

SRAM PIM

DRAM PIM

CPU

Conventional

Motherboard

C

    A

        C

            H

               E

A Cray Inc.

HPCS

Partner

PIM Lite
• 1st Mobile, Multithreaded PIM

• Demo all lessons learned

Coming Soon

To a Computer

Near You
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Topics

• How We Spend Today’s Silicon

• The Silicon Roadmap – A Different Way

• PIM as an Alternate Technology

• PIM-Enabled Architectures

• Matching ISA & Execution Models

• Some Examples
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How We Spend Our Silicon Today:

Or 

“The State of State”
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How Are We Using Our Silicon?

Compare CPU to a DP FPU
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So We Expect State & Transistor 

Count to be Related
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The Silicon Roadmap:

Or

“How are we Using an Average 

Square of Silicon?”
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The Perfect “Knee Curves”

No “Overhead” of Any Kind
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Adding In 

“Lines of Constant Performance”
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What if We Include Basic Overhead?
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What If We Look At 

Today’s Separate Chip Systems?
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How Many of Today’s Chips 

Make Up a “Zetta”?

A ZettaFlop

A ZettaByte

And This Does Not Include “Routing”
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How Does Chip I/O Bandwidth 

Relate to Performance?
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Problems

• Complexity & Area Infeasible

• Flop numbers assume perfect utilization

• But latencies are huge

– Diameter of Manhatten = 28 microseconds

• And efficiencies will plummet

– At 0.1% efficiency we need area of Rhode 

Island for microprocessor chips

• Whose diameter is 240 microseconds

• And we don’t have enough pins!



Slide 22LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004

PIM as an Alternative Technology
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PIM Objective

• Move processing logic onto dense DRAM die

• Obtain decreased latency & increased 

latency for local reference

– Without needing pins

• AND simplify logic down to a simple core

• Thus allowing many more “processors”

• And off chip pins used for true remote 

reference
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Classical DRAM

• Memory mats: ~ 1 Mbit each

• Row Decoders

• Primary Sense Amps

• Secondary sense amps & “page” multiplexing

• Timing, BIST, Interface

• Kerf
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Embedded DRAM Macros Today

2nd Sense, Mux, BIST, Timing

Row

Decode
Prim. SA

MAT

Prim. SA

MAT

Row

Decode
Prim. SA

MAT

Prim. SA

MAT

. . . 
Memory Block: 512x2048 = 1 Mbit

Base Block

Some maximum # of memory blocks

(Almost)

Address “Wide Word” Data: 100’s of bits

Cycle Time Estimates from IBM for Embedded RAM

1

10
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1998 1999 2000 2001 2002 2003 2004 2005

SRAM DRAM Est. SRAM #REF!



Slide 26LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004

PIM Chip 

MicroArchitectural Spectrum
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The PIM 

“Bandwidth Bump”
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PIM-Based Architectures:

System & Chip Level
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PIM System Design Space: 

Historical Evolution
• Variant One: Accelerator (historical)

• Variant Two: Smart Memory

– Attach to existing SMP (using an existing memory bus interface)

– PIM-enhanced memories, accessible as memory if you wish

– Value: Enhancing performance of status quo

• Variant Three: Heterogeneous Collaborative

– PIMs become “independent,” & communicate as peers

– Non PIM nodes “see” PIMs as equals

– Value: Enhanced concurrency and generality over variant two

• Variant Four: Uniform Fabric (“All PIM”)

– PIM “fabric” with fully distributed control and emergent behavior

– Extra system I/O connectivity required

– Value: Simplicity and economy over variant three

• Option for any of above: Extended Storage

– Any of above where each PIM supports separate dumb memory chips
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TERASYS SIMD PIM 

(circa 1993)
• Memory part for CRAY-3 

• “Looked like” SRAM memory

• With extra command port

•128K SRAM bits (2k x 64)

• 64 1 bit ALUs

• SIMD ISA

• Fabbed by National

• Also built into workstation with 

64K processors

• 5-48X Y-MP on 9 NSA benchmarks
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EXECUBE: An Early MIMD 

PIM (1st Silicon 1993)
• First DRAM-based Multiprocessor on a Chip

• Designed from onset for “glueless” one-part-type scalability

• On-chip bandwidth: 6.2 GB/s; Utilization modes > 4GB/s

8 

Compute Nodes

on ONE Chip

MEMORY MEMORY MEMORY MEMORY

MEMORY MEMORY MEMORY MEMORY

CPU

CACHE CACHE

Include

“High Bandwidth”

Features in ISA

EXECUBE: 

3D Binary Hypercube

SIMD/MIMD on a chip



Slide 32LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004

RTAIS: The First ASAP

(circa 1993)
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• Application: “Linda in Memory”

• Designed from onset to perform wide ops “at the sense amps”

• More than SIMD: flexible mix of VLIW

• “Object oriented” multi-threaded memory interface

• Result: 1 card 60X faster than state-of-art R3000 card
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Mitsubishi M32R/D
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Also two 1-bit I/Os

• 32-bit fixed point CPU + 2 MB DRAM

• “Memory-like” Interface

• Utilize wide word I/F from DRAM macro for cache line
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DIVA: Smart DIMMs for 

Irregular Data Structures
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DIVA Functions:

• Prefix operators

• Dereferencing & pointer 
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• Compiled methods

• Multi-threaded
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Micron Yukon

• 0.15µµµµm eDRAM/ 0.18µµµµm logic 

process

• 128Mbits DRAM

– 2048 data bits per access

• 256 8-bit integer processors

– Configurable in multiple 

topologies

• On-chip programmable controller

• Operates like an SDRAM

SDRAM-like interface

FIFO

Task Dispatch UnitTask Dispatch UnitTask Dispatch UnitTask Dispatch Unit

FIFO FIFO

M16 PE M16 PE M16 PE M16 PE 
sequencersequencersequencersequencer

DRAM DRAM DRAM DRAM 
Control Control Control Control 
UnitUnitUnitUnit

256 Processing 256 Processing 256 Processing 256 Processing 
ElementsElementsElementsElements
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16MBytes 16MBytes 16MBytes 16MBytes 
Embedded Embedded Embedded Embedded 
DRAMDRAMDRAMDRAM

HMIHMIHMIHMI

Synchronisation

Host 
(remote)
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Berkeley VIRAM

• System Architecture: single 

chip media processing

• ISA: MIPS Core + Vectors + 

DSP ops

• 13 MB DRAM in 8 banks

• Includes flt pt

• 2 Watts @ 200 MHz, 

1.6GFlops

4 “Vector Lanes”

MIPS
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The HTMT Architecture &

PIM Functions

• Compress/Decompress

• Spectral Transforms

• Compress/Decompress

• ECC/Redundancy

• Compress/Decompress

• Routing

3D

Mem

DRAM

PIM

OPTICAL SWITCH

SRAM

PIM

RSFQ

Nodes

I/O FARM

• RSFQ Thread Management

• Context Percolation

• Scatter/Gather Indexing

• Pointer chasing

• Push/Pull Closures

• Synchronization Activities

• Data Structure 

Initializations 

•“In the Memory” 

Operations

New Technologies:

• Rapid Single Flux Quantum (RSFQ) devices for 100 GHz CPU nodes

• WDM all optical network for petabit/sec bi-section bandwidth

• Holographic 3D crystals for Petabytes of on-line RAM

• PIM           for active memories to manage latency

PIMs in Charge
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PIM Lite

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

• “Looks like memory” at Interfaces

• ISA: 16-bit multithreaded/SIMD

– “Thread” = IP/FP pair

– “Registers” = wide words in frames

• Designed for multiple nodes per chip

• 1 node logic area ~ 10.3 KB SRAM 

(comparable to MIPS R3000)

• TSMC 0.18u 1-node 1st pass success

• 3.2 million transistors (4-node)

Thread
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Frame

Memory

Instr
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ALU

Data

Memory

Write-

Back

Logic

Parcel in (via chip data bus) Parcel out (via chip data bus)

Instruction Memory
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(2 Kbytes)

Thread Pool
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Next: An “All-PIM” Supercomputer

PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM

PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM

Interconnection

Network

PIM Cluster
PIM Cluster

“Host”
PIM Cluster

I/O

A “PIM Cluster”

A “PIM DIMM”
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What Might an “All-PIM” Zetta

Target Look Like?

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2015 2016 2018

A
re

a
 o

f 
1
Z
B

 P
IM

 S
y
s
te

m
 (
s
q
. 
m

)

1000 ZF Peak 100 ZF Peak 10 ZF Peak 2 ZF Peak

1 ZF Peak Manhatten Island No Logic

I can add 1000X peak performance at 3X area!



Slide 41LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004

Matching ISA 

& 

Execution Models



Slide 42LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004

Guiding Principles: Memory-Centric 

Processor Architecture

Memory
thread frames

instructions

global data

Processor

• “How low can you go”

– minimize storage for machine state

• registers, buffers, etc.

– don’t overprovision functional units

� “Wider is better”

0swap thread state in single bus cycle

0wide-word, SIMD data operations

� Focus on memory, not logic

� Make “CPUs” anonymous

� Maximize performance, keeping cost in 

check

� make processor cost like a memory, 

not vice-versa!
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Working Definitions

Light Weight State: Refers to computational thread 

• Separated from rest of system state

• Reduced in size to ~  cache line

Serious Multi-threading

• Very cheap thread creation and state access

• Huge numbers of concurrent threads

• Support for cheap, low level synchronization

• Permit opportunities for significant latency hiding

• ISA level knowledge of “locality”
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How to Use 

Light Weight Threads

• Approaches to solving Little’s Law problems

– Reduce # of latency-causing events

– Reduce total number of bit/chip crossings per operation

– Or, reduce effective latency

• Solutions

– Replace 2 way latency by 1 way “command”

– Let thread processing occur “at the memory”

– Increase number of memory access points for more bandwidth

• Light Weight Thread: minimal state needed to initiate 

limited processing in memory
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Parcels: 

The Architectural Glue

• Parcel = Parallel Communication Element

• Basic unit of communication between nodes

– At same level as a “dumb memory reference”

• Contents: extension of “Active Message”

– Destination: Object in application space

– Method: function to perform on that object

– Parameters: values to use in computation

Threads in Transit!!!Threads in Transit!!!
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Type of Parcels

• Memory Access: “Dumb” Read/write to memory

• AMO: Simple_prefix_op to a memory location

• Remote Thread Invocation: Start new thread at node 
holding designated address

– Simple case: booting the original node run-time

– More interesting: “slices” of program code

• Remote Object Method Invocation: Invoke method 
against an object at object’s home

• Traveling Thread = Continuation: Move entire
execution state to next datum.
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Software Design Space Evolution

• Hardware “fetch_and_op”

• Generic libraries only

• App.-specific subprogram compilation

– Explicit method invocation

– Expanded storage management

• Explicit support for classical multi-threading

• Inter-thread communication

– Message passing

– Shared memory synchronization

– Atomic multi-word transactions

• Pro-active data migration/percolation

• Expanded multi-threading

– Extraction of very short threads, new AMOs

– Thread migration

• OS, run-time, I/O management “in the memory”
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The HTMT Percolation 
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More Exotic Parcel Functions

The “Background” Ones

• Garbage Collection: reclaim memory

• Load Balancing: check for over/under load & 

suggest migration of activities

• Introspection: look for livelock, deadlock, faults 

or pending failures

• Key attributes of all of these

– Independent of application programs

– Inherent memory orientation

– Significant possibility of mobility
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Examples:

• In-Memory Multi-Threading

• Traveling Threads

• Very Light Weight Thread Extraction
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N-Body Simulation

for each body

calculate net force

synchronize

update positions

for each body

calculate net force

initialize
• Simulate motion of N bodies under 

mutual attractive/repulsive force.  

O(N2)

• Barnes-Hut method

– clusters of bodies approximated 

by single body when dense and 

far away

– subdivide region into cells, 

represent using quad/octree

• Highly parallel

– 90+ percent of workload can be 

parallelized
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Heavyweight N-Body

• Each node in cluster has partition of tree 

in memory, distributed spatially

• Needs “Locally Essential Tree” in each 

cache

• Network traffic on every cache miss

• Sterling, Salmon, et. al. Gordon Bell Prize, 

1997 (performance & cost-perf)

L.E.T. in

cache
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Multithreaded In-PIM N-Body

• Thread per body, accumulating net force, 

traversing tree in parallel, in-memory 

processing

• Very low individual thread state (net force, 

next pointer, body coordinates, body mass)

• Network traffic only when thread leaves 

partition—lower traffic overall

replicate top of tree to

reduce bottleneck
• 16 64 MB PIM Chips

• Each with multiple nodes

• Appear as memory to host

• Host is 2X clock rate of PIM
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N-Body on PIM:

Cost vs. Performance
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• Cost basis: Prior system

• 15% Serial on Host

• 85% highly threadable

• 40% of 85% is short vector

Conclusions:

• MT & latency reduction buys 

the most

• Short FP vectors may not be 

worth it



Slide 55LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004

Example: 

Traveling Thread Vector Gather
• Given Base, Stride, Count, read strided vector to 

compact vector

• Classical CPU-centric approach: 

– Issue “waves” of multiple, ideally K, loads

– If stride < block size, return cache line

– Else return single double word

• UWT thread-based

– Source issues K “gathering” threads, one to each PIM 

memory macro

– Each thread reads local values into payload

– Continuing dispatching payload when full
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Vector Gather via LWT

Traffic Estimates
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• 4X+ reduction in Transactions

• 25%+ reduction in bytes transferred

Q = Payload size in DW
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Transaction Reduction factor: 

•1.66X (Q=1)

•10X (Q=6) 

• up to 50X (Q=30)
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Trace-Based Thread Extraction & 

Simulation

• Applied to large-scale Sandia applications 

over summer 2003
P: desired # concurrent threads

From Basic Application Data Through Detailed Thread Characteristics

Analysis

To Overall Concurrency 
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Summary
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Summary

• When it comes to silicon: It’s the Memory, Stupid!

• State bloat consumes huge amounts of silicon

– That does no useful work!

– And all due to focus on “named” processing logic

• With today’s architecture, we cannot support 

bandwidth between processors & memory

• PIM (Close logic & memory) attacks all these 

problems

• But it’s still not enough for Zetta

• But the ideas may migrate!
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A Plea to Architects

and Language/Compiler

Developers!

Relentlessly Attack State Bloat

by

Reconsidering Underlying Execution Model

Starting with Multi-threading

Of Mobile, Light Weight States

As Enabled by PIM technology
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The Future

Will We Design Like This? Or This?

Regardless of Technology!
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PIMs Now In Mass Production

• 3D Multi Chip Module

• Ultimate in Embedded Logic

• Off Shore Production

• Available in 2 device types

•Biscuit-Based Substrate

•Amorphous Doping for 
Single Flavor Device Type

•Single Layer Interconnect 
doubles as passivation
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