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Why Is Today’s Supercomputing Hard
In Silicon: Little’s Tyranny

ILP: Getting tougher & tougher to increase
* Must extract from program

* Must support in H/'W
Concurrency = Throughput
Latency \
Much less than peak
and degrading rapidly

Getting worse fast!!!!
(The Memory Wall)
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N Why Is Zettatlops Even Harder?

 Silicon density: Sheer space taken up
implies large distances & loooooong

latencies
e Silicon mindset:
— Processing logic “over here”
— Memory “over there”

— And we add acres of high heat producing
stuff to bridge the gap

e Thesis: how far can we go with a mindset
change
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N This Talk: Climbing the Wall a
“Different Way”

 Enabling concepts implementable in silicon:
— Processing In Memory
* Lowering the wall, both bandwidth & latency

— Relentless Multi-threading with Light Weight
Threads

* to change number of times we must climb it

* to reduce the state we need to keep behind

* Finding architectures & execution models that
support both

* With emphasis on “Highly Scalable” Systems
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N‘f “Processing-In-Memory”

 High density memory on same chip g SSTITITITIIIL
with high speed logic P pe=eme=smasss

« Very fast access from logic to memory é : Y

* Very high bandwidth RESAbes) | _'

- ISA/microarchitecture designed to 2 Tesere  Tilinga Chip
utilize high bandwidth S B

o Tile with “memory+logic” nodes  p et

|Parcel Decode and Assemblyl A Memory/LOgiC NOde
Stand Alone < » Interconnect P >

Memory Units
B I-IT%
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Processing .
LOgic al__
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A Short History of PIM @ ND

Our IBM Origins :

ST © 64KB »

: CPU . 3 ;
. - M 4
: . UF UF
. . CPU Core

E E PCI Memory I/F

: EXECUBE q RTAIS # EXESPHERE ﬁ PIM Fast

: * Ist DRAM MIMD PIM * FPGA ASAP prototype * 9 PIMs + FPGA interconnect * PIM for Spacecraft

= « 8-way hypercube * Early multi-threading * Place PIM in PC memory space * Parcels & Scalability

PIM Lite
* 15t Mobile, Multithreaded PIM
* Demo all lessons learned

* Fabbed in adv. Technologies
*» Explore key layout issues

A Cray Inc.
Coming Soon
J Partner
To a Computer
Near You G
h Cascade h HTMT — . DIVA
* World’s First Trans-petaflop * 2-level PIM for petaflop * Multi-PIM memory module
* PIM-enhanced memory system * Ultra-scalability * Model potential PIM programs
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N Topics

« How We Spend Today’s Silicon

* The Silicon Roadmap — A Different Way
 PIM as an Alternate Technology
 PIM-Enabled Architectures

 Matching ISA & Execution Models
 Some Examples
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How We Spend Our Silicon Today:
Or
“The State of State”
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8P How Are We Using Our Silicon?
Compare CPU to a DP FPU

*
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N CPU State vs Time
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N S0 We Expect State & Transistor
Count to be Related
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The Silicon Roadmap:
Or
“How are we Using an Average
Square of Silicon?”
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N The Perfect “Knee Curves”
No “Overhead” of Any Kind

“Knee”: 50% Logic & 50% Memory
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N What if We Include Basic Overhead?
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1P What If We Look At
Today’s Separate Chip Systems?
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N How Many of Today’s Chips
Make Up a “Zetta”?
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N How Bigis a1 ZB System?
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N How Does Chip 1/0O Bandwidth
Relate to Performance?

-
\
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N Problems

 Complexity & Area Infeasible
* Flop numbers assume perfect utilization
* But latencies are huge
— Diameter of Manhatten = 28 microseconds

e And efficiencies will plummet

— At 0.1% efficiency we need area of Rhode
Island for microprocessor chips

* Whose diameter 1s 240 microseconds

 And we don’t have enough pins!
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PIM as an Alternative Technology
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N PIM Objective

« Move processing logic onto dense DRAM die

* Obtain decreased latency & increased
latency for local reference

— Without needing pins
* AND simplify logic down to a simple core
* Thus allowing many more “processors”

* And off chip pins used for true remote
reference
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qmmmmmmﬂmn

LASCI04.ppt

Some maximum # of memory blocks
Prim. SA Prim. SA

Memory Block: 512x2048 = 1 Mbit

2nd Sense, Mux, BIST, Timing Base Block

!

Address “Wide Word” Data: 100’s of bits

Cycle Time Estimates from IBM for Embedded RAM
100
. l\-\
1 | \R\K
1998 1999 2000 2001 2002 2003 2004 2005
—— SRAM —m— DRAM —x—Est. SRAM —e—#REF!
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1P PIM Chip
MicroArchitectural Spectrum

L L
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N The PIM
“Bandwidth Bump”

Region of classical
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PIM-Based Architectures:
System & Chip Level
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B9  PIM System Design Space:
Historical Evolution

e Variant One: (historical)
* Variant Two:
— Attach to existing SMP (using an existing memory bus interface)
— PIM-enhanced memories, accessible as memory if you wish
— Value: Enhancing performance of status quo
 Variant Three:
— PIMs become “independent,” & communicate as peers
— Non PIM nodes “see” PIMs as equals
— Value: Enhanced concurrency and generality over variant two
* Variant Four:
— PIM “fabric” with fully distributed control and emergent behavior
— Extra system I/O connectivity required
— Value: Simplicity and economy over variant three

Option for any of above:
— Any of above where each PIM supports separate dumb memory chips
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N TERASYS SIMD PIM
(circa 1993)

| * Memory part for CRAY-3
e || * “Looked like” SRAM memory
| * With extra command port
== | 128K SRAM bits (2k x 64)
JJ -« 641 bit ALUs
== .SIMDISA
| * Fabbed by National

e Also built into workstation with
64K processors

* 5-48X Y-MP on 9 NSA benchmarks
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89 EXECUBE: An Early MIMD
PIM (1st Silicon 1993)

* First DRAM-based Multiprocessor on a Chip
* Designed from onset for “glueless” one-part-type scalability
* On-chip bandwidth: 6.2 GB/s; Utilization modes > 4GB/s

“n e e Compute Nodes 3D Binary Hypercube
High Bandwidth on ONE Chip  SIMD/MIMD on a chip
Features in ISA
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RTAIS: The First ASAP
(cn‘cal993)

Controller
MEMORY BUS

ALU | ALU | ALU | ALU | ALU

Inter-ALU Exchange

* Application: “Linda in Memory”

29

* Designed from onset to perform wide ops “at the sense amps
e More than SIMD: flexible mix of VLIW

* “Object oriented” multi-threaded memory interface

e Result: 1 card 60X faster than state-of-art R3000 card
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N Mitsubishi M32R/D

DRAM (a: Mpy(a: DRAM
CPU Also two 1-bit I/Os
c c
h Mem h
DRAM o I/F o DRAM

16 bit data bus ‘ ‘ 24 bit address bus

S i i - A

 32-bit fixed point CPU + 2 MB DRAM
* “Memory-like” Interface
» Utilize wide word I/F from DRAM macro for cache line
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N : Smart DIMMs for
Irregular Data Structures

.
--------------------------------------------------------------------

o 0 00
Host issues

 Generalized
“Loads & Stores”

DIV A Functions:

* Prefix operators

* Dereferencing & pointer
chasing

| e Compiled methods

| 1CPU+2MB e Multi-threaded

mmmmmmmmmmmm PMIPS +"Wide Word™, May generate parcels

Active Object-
oriented store
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*N Micron Yukon

* 0.15um eDRAM/ 0.18um logic
process

 128Mbits DRAM

— 2048 data bits per access

16MBytes
Elements Embedded

» 256 8-bit integer processors DRAM

256 Processing

— Configurable in multiple

topologies
* On-chip programmable controller

* Operates like an SDRAM
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Berkeley VIRAM

e System Architecture: single
chip media processing

e [SA: MIPS Core + Vectors +
DSP ops

13 MB DRAM in 8 banks
* Includes 11t pt

* 2 Watts @ 200 MHz,
1.6GFlops
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The HTMT Architecture &
PIM Functions

SE

» Compress/Decompress
* ECC/Redundancy

- DRAM| -
el PIM
1

*Co resleecomrress] OPTICAL SWITCH
» Spegtral Transforiris

» Compress/Decompress
* Routing

* Daja Structure
Initiglizations
*“In ghe Memory”
Opetatibns

* RSFQ Thread Management
» Context Percolation

* Scatter/Gather Indexing

* Pointer chasing

* Push/Pull Closures

. * Synchronization Activities
New Technplagics:

 Rapid SingleitFlux Quaptum (RSFQ) devices for 100 GHz CPU nodes .
« WDM All éptical network for petabit/sec bi-section bandwidth PIMs in Charge

» Holographic 3D crystals for Petabytes of on-line RAM
* PIM N for active memories to manage latency
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PIM Lite

“Looks like memory” at Interfaces

Thread Pool * ISA: 16-bit multithreaded/SIMD
Instruction Memory — “Thread” = IP/FP pair
(4 Kbytes)

“Registers” = wide words in frames

FEns ey (1 1S « Designed for multiple nodes per chip

* 1 node logic area ~10.3 KB SRAM
DELE] LSy (comparable to MIPS R3000)

(2 Kbytes)
« TSMC 0.18u 1-node 15t pass success
e 3.2 million transistors (4-node)

4.5mm ——

ALU & Permute Net

Write-Back Logic

—29mm —

- Parcel in (via chip data bus) Parcel out (via chip data bus)
ﬂ memory interconnect network ﬁ

PIM 1 - - - T -
Memory e

cPU Thread | Instr L Ll Frame [J Ll , , 4 Data fL VI;/;I::T(-
Queue | Memory| | | Memory Memory| Logic

< Memory interconnect network > 1 ‘
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N Next: An “All-PIM” Supercomputer

“PIM D
mmmmwmmmﬂ

A “PIM Cluster”

GCHOSt”>

CPIM Cluster Y¥a

Interconnection
Network

CPIM Cluster D

PIM Cluster
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B9 What Might an “All-PIM” Zetta
Target Look Like?

1.00E+11

10RO ™1 can add 1000X peak performance at 3X area!

1.00E+09 | === < ~\
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~ N . .\
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1 ZF Peak = = Manhatten Island = = = No Logic
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Matching ISA

&
Execution Models
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Guiding Principles: Memory-Centric
Processor Architecture

¢ Focus on memory, not logic

¢ Make “CPUs” anonymous

¢ Maximize performance, keeping cost in
check

¢ make processor cost like a memory,
not vice-versa!

« “How low can you go”

Processor — minimize storage for machine state

* registers, buffers, etc.

< > — don’t overprovision functional units

¢ “Wider is better”
swap thread state in single bus cycle
wide-word, SIMD data operations
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N Working Definitions

Light Weight State: Refers to computational thread

* Separated from rest of system state

 Reduced in size to ~ cache line

Serious Multi-threading

* Very cheap thread creation and state access
 Huge numbers of concurrent threads

* Support for cheap, low level synchronization
 Permit opportunities for significant latency hiding

ISA level knowledge of “locality”
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N How to Use
Light Weight Threads

* Approaches to solving Little’s Law problems

— Reduce # of latency-causing events
— Reduce total number of bit/chip crossings per operation
— Or, reduce effective latency
e Solutions
— Replace 2 way latency by 1 way “command”
— Let thread processing occur “at the memory”
— Increase number of memory access points for more bandwidth

: minimal state needed to initiate
limited processing in memory
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N Parcels:

The Architectural Glue

= allel Communication /~/ement
* Basic unit of communication between nodes
— At same level as a “dumb memory reference”
e Contents: extension of “Active Message™
— Destination: Object in application space
— Method: function to perform on that object

— Parameters: values to use in computation

Threads in Transit!!!
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N Type of Parcels

Read/write to memory
: Simple prefix op to a memory location

: Start new thread at node
holding designated address
— Simple case: booting the original node run-time
— More interesting: “slices” of program code

: Invoke method
against an object at object’s home

= Continuation: Move
execution state to next datum.

LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004 Slide 46



N Software Design Space Evolution

 Hardware “fetch_and_op”
* Generic libraries only
* App.-specific subprogram compilation
— Explicit method invocation
— Expanded storage management
« Explicit support for classical multi-threading
e Inter-thread communication
— Message passing
— Shared memory synchronization
— Atomic multi-word transactions
* Pro-active data migration/percolation
 Expanded multi-threading
— Extraction of very short threads, new AMOs
— Thread migration
 OS, run-time, I/O management “in the memory”
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The HT'MT Percolation
Execution Model

Data Structures

In DRAM “Contexts” in SRAM
‘ ‘ E ! t | “Contexts” in
v i CRAM
0O AT
R Cl:
T N1 Ol
E =<
X I
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N More Exotic Parcel Functions

The “Background” Ones
* Garbage Collection: reclaim memory

* Load Balancing: check for over/under load &
suggest migration of activities

* Introspection: look for livelock, deadlock, faults
or pending failures

* Key attributes of all of these
— Independent of application programs
— Inherent memory orientation
— Significant possibility of mobility
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Examples:

* In-Memory Multi-Threading
* Traveling Threads
* Very Light Weight Thread Extraction

LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004 Slide 50



N N-Body Simulation

 Simulate motion of N bodies under

mutual attractive/repulsive force.
O(N?)
 Barnes-Hut method

initialize

for each body

] ] calculate net force
— clusters of bodies approximated

by single body when dense and synchronize
far away update positions

— subdivide region into cells,

represent using quad/octree for each body

calculate net force
« Highly parallel

— 90+ percent of workload can be

parallelized —|— ] Sl
. G? ;715 ° °
Fi= —T TR
Z;HX#_XJHZ sfefelele [+
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Heavyweight N-Body

 Each node in cluster has partition of tree
in memory, distributed spatially

* Needs “Locally Essential Tree” in each fﬁk
cache

 Network traffic on every cache miss

, Salmon, et. al. ,
1997 (performance & cost-perf)

L.E.T.in
cache
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N Multithreaded In-PIM N-Body

 Thread per body, accumulating net force,
traversing tree in parallel, in-memory
processing N\ A

* Very low individual thread state (net force, - -
next pointer, body coordinates, body mass) |

 Network traffic only when thread leaves
partition—lower traffic overall

replicate top of tree to

* 16 64 MB PIM Chips
reduce bottleneck

* Each with multiple nodes
* Appear as memory to host

7}:\ » Host is 2X clock rate of PIM
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o

Relative Increase

N
o

5.5

3.5

w
\

N

1.5

N-Body on PIM:
Cost vs. Performance

speedup
cost

4-way SIMD

. . Conclusions: =
 Cost basis: Prior system

* 15% Serial on Host
* 85% highly threadabl
- * 40% of 85% is sheft vector worth it .

4-way SIMD

1 FPU 1

the most .

1 2 3 4 5

Nodes per PIM Chip

* MT & latency reduction buys

* Short FP vectors may not be
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N Example:

Traveling Thread Vector Gather

 Given Base, Stride, Count, read strided vector to
compact vector
* Classical CPU-centric approach:
— Issue “waves” of multiple, ideally K, loads
— If stride < block size, return cache line
— Else return single double word

e UWT thread-based

— Source issues K “gathering” threads, one to each PIM
memory macro

— Each thread reads local values into payload
— Continuing dispatching payload when full
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N Vector Gather via LWT
' Traffic Estimates

100000 ' 10000000
N )
» 10000 %‘\ = 1000000
c (]
9 =
"6' [}
8 1000 | “ 100000
5 ‘ 5
= [
100 @ 10000 -
5
10 ‘ 1000 ‘ ‘ ‘
1 10 100 1000 10000 1 10 100 1000 10000
Stride (Bytes) Q = Payload size in DW Stride (Bytes)
—m— Classical Q=2 Q=3 = Classical Q=2 Q=3

—%—Q=4 —e—Q=6 —+—Q=8

—%—Q=4 -—e—-Q=6 —+—Q=8

* 4X+ reduction in Transactions
» 25%+ reduction in bytes transferred

LASCI04.ppt Workshop on Extreme Computing, LASCI, Oct. 12, 2004 Slide 56



Spawn type 2s

Accumulate Q
X’s in payload

Fetch Q
matching Y’s,
add to X’s,
save in payload,
store in Q Z’s

NN

Vector Add via
Traveling Threads

Transaction Reduction factor:

«1.66X (0=1)
10X (0=6)
*up to 50X (0=30)

g Stride thru Q elements

N

<O ZmEZ
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N Trace-Based Thread Extraction &

Simulation

« Applied to large-scale Sandia applications

over summer 2003

Instroction P: desired # concurrent threads
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From Basic Application Data Through Detailed Thread Characteristics To Overall Concurrency
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Summary
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N Summary

 When it comes to silicon: It’s the Memory, Stupid!

* State bloat consumes huge amounts of silicon
— That does no useful work!
— And all due to focus on “named” processing logic

* With today’s architecture, we cannot support
bandwidth between processors & memory

 PIM (Close logic & memory) attacks all these
problems

* But it’s still not enough for Zetta
* But the ideas may migrate!
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A Plea to Architects
and Language/Compiler
Developers!
Relentlessly Attack State Bloat
by
Reconsidering Underlying Execution Model
Starting with Multi-threading
Of Mobile, Light Weight States
As Enabled by PIM technology
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N The Future

Will We Design Like This?

Regardless of Technology!
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N PIMs Now In Mass Production

* 3D Multi Chip Module
 Ultimate in Embedded Logic
» Off Shore Production

 Available in 2 device types

*Biscuit-Based Substrate

cAmorphous Doping for
Single Flavor Device Type

Single Layer Interconnect
doubles as passivation
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