Quiet 2-Level Adiabatic Logic

Zettaflops, LLC Technical Report ZF009

Erik P. DeBenedictis
Zettaflops, LLC
Albuquerque, New Mexico, USA
April 9, 2021

Abstract

This document defines Quiet 2-Level Adiabatic Logic (Q2LAL), a variant of Static 2-Level Adiabatic Logic (S2LAL). Q2LAL yields universal logic with two rails and places a constant load on the power supply. In comparison, S2LAL requires four rails for universal logic and four rails to achieve constant load. The constant load is relevant to resistance to Differential Power Analysis (DPA), a cyber security issue, and also makes the power-clock generators simpler.

Keywords-adiabatic computing; reversible computing; quantum computer; supercomputer; CMOS; cryo CMOS; Static 2Level Adiabatic Logic; S2LAL; Quiet 2-Level Adiabatic Logic; Q2LAL

I. Quiet 2-Level Adiabatic Logic

This document formally defines Quiet 2-Level Adiabatic logic (Q2LAL) [1].

At least four logic families, SCRL [2], 2LAL [3], S2LAL [4] and now Q2LAL use a common circuit framework and the same notation. Q2LAL can be most effectively explained by symbolic manipulation of S2LAL's circuit equations, which requires knowledge of both S2LAL and the common notation.

This document only attempts to describe the basic shift register, universal Boolean logic, and shows the even load property via simulation.

II. DATA WAVEFORMS

Fig. 1 illustrates the signal waveforms for S2LAL and Q2LAL. The primary signal waveforms are in the upper left of Fig. 1a and b and called \hat{S} and \hat{Q} depending on the logic family. The primary waveform in both cases represents a 1 as a positive-going pulse. The circumflex (hat) diacritical mark was chosen because it looks like the waveform of a positive-going pulse.

S2LAL's second waveform in Fig. 1a is carried on a second wire, or rail, that always carries the electrical complement of the first waveform. This means the second wire rests at supply voltage V_{dd} and has negative-going pulses denoted \check{S}. The caron (cup) diacritical mark was chosen because it looks like the waveform of a negative going pulse. The absence of a pulse represents a 0 in S2LAL.

S2LAL can store data in a shift register with the dual rail signaling just described, but it requires two more rails to
implement universal logic. The other waveforms are found below the first pair in Fig. 1a. These rails hold the logical complement of the data on the first pair of rails.

Each rail requires a copy of the circuit. S2LAL requires four rails to create universal adiabatic logic, but it would be preferable to have fewer rails.

Q2LAL is dual rail as illustrated in Fig. 1b. Q2LAL signal has two rails and two wires, both of which have a resting state of 0 . A positive-going pulse on one wire is called \hat{Q}^{1} and indicates the transmission of 1 , and likewise \hat{Q}^{0} on the other wire represents a 0 .

S2LAL and Q2LAL use the same 8-phase power-clocks illustrated in Fig. 2a, where the 8 phases are called ticks. If the waveforms are considered positive pulses, they are denoted $\phi \hat{\phi}$, $i=0 \ldots 7$, but they can also be considered negative pulses due to symmetry. So, $\not \hat{\phi_{i}}=\not \phi_{i+4} \bmod 8, i=0 \ldots 7$. A waveform should follow a linear ramp for the entire duration of the tick. The consistency of the ramp's slope is critical to energy efficiency in all adiabatic circuits, so the unfamiliar reader should not see the ramps as just an artistic convenience.

Fig. 1. Signal waveforms. (a) Predecessor S2LAL is dual or quad rail. (b) Q2LAL is dual rail. Notation from [4].

Fig 2. (a) Clocks and (b) data signaling formats are the same between S2LAL and Q2LAL. $\hat{\phi}_{i}=\phi_{i+4 \text { mod } 8}$, but this is not true for the S 's. Notation from [4].

Both S2LAL and Q2LAL have the same data timing. The data waveforms in Fig. 2b are pulses that are stable for 5 of 8 ticks. The other three ticks include one tick in the resting state and two transition ticks.

All the logic families involve transmission gates. A pair of back-to-back p- and n-channel field effect transistors (FETs) appear as a rectangle with a line connected to the long side, as shown in Fig. 3a. The line represents two complementary electrical signals that go to the transistors' gates. If the lines on the short side of the rectangle are a quad-rail signal, the rectangle implicitly represents two transmission gates or four transistors, also illustrated in Fig. 3a.

Fig 3. (a) Transmission gate notation, notably including multi-rail. (b) Emerging framework for a SCRL, 2LAL, S2LAL, and Q2LAL. Notation from [4].

The framework involves the coupled cycles in Fig. 3b, where 8 cycles form a complete logic stage in both S2LAL and Q2LAL.

The various families differ in the data representation on the lines, the clock sequencing, and the circuitry in the functional units. The lines in SCRL are trits with three signal levels of $V_{\mathrm{dd}} / 2,0$, and $-V_{\mathrm{dd}} / 2$, as opposed to more familiar bits with two signal levels of V_{dd} and 0 in the other families.

Signals are defined by the clock phase or tick where the level is valid, so a signal A could be denoted by \hat{A}_{i}, where i identifies the tick.

Prior to Q2LAL, circuits using the framework could perform AND and OR logic functions but could not invert a signal without doubling the number of rails. While there are useful circuits that do not need inversion, such as memory, inversion is needed for universal logic.

The effect of inversion in non-Q2LAL families can be created by duplicating a circuit, except all ANDs are replaced by ORs and vice-versa. If all input data provided to the original circuit is also provided to the copy in a logically inverted form, the two circuits will proceed in lockstep with corresponding signals in the two circuits being logical inverses of each other. With the setup just described, a signal can be inverted by swapping it with the corresponding signal in the other circuit. SCRL stages unavoidably invert data, leading to a similar problem whose solution also requires a copy of the circuit.

However, a Q2LAL signal can be logically inverted by swapping the two wires. There is no need to copy the circuit.

Let us derive Q2LAL by symbolic manipulation of S2LAL's circuit diagram. By replacing negative-going pulses (cups) with functionally equivalent positive-going pulses (hats)

Fig. 4. (a) Unlatched adiabatic buffer from [4, Fig. 4], (b) same buffer for the negated signal, (c) however, the incoming cup signals can be generated from the negated signals in the previous stage, provided that a helper signal \check{c}_{i} is available. (d) The helper signal can be generated once in an entire circuit from available clocks.
representing logically inverted data, we will create circuitry that does not depend on negative-going pulses. This allows us to delete the electrically complemented rail altogether, simplifying the circuit.

Fig. 4 illustrates the circuitry within the triangular structures of the framework called adiabatic amplifiers [5]. Fig. 4 a is from S2LAL [4, Fig. 1], but expanding the transmission gate into its two transistors and labeling the input with the applicable phase. Fig. 4b is the same circuitry processing the logically inverted signal $-A$.

The upper symbol $\check{A_{i-1}}$ in Fig. 4a enables one transistor of the transmission gate that connects clock $\hat{\phi_{i}}$ to the output. In Fig. 4 c , we can replace this signal with $-\hat{A}_{i-1}$ because the alternative signal is stable at the correct level when needed to gate the clock and is simply creating a redundant path to ground at other times.

Likewise, the lower symbol $\check{A_{i-1}}$ in Fig. 4a enables the transistor that clamps the output to ground. Replacing that signal with $-\hat{A}_{i-1}$ in Fig. 4c helps if the desired output is a 0 but will leave the output floating between output pulses. This leads us add a transistor gated by the signal $\check{c_{i-1}}$. Waveform $\check{c_{k}}$ is the electrical inverse of \hat{D}_{k} in Fig. 2b. Thus, the signal \check{c}_{i-1} goes high during the period where the output needs to be clamped to ground, irrespective of whether the output is a 0 or 1 .

Fig. 4 d shows how to create the \check{c}_{k} signal for stage k from four available clocks and four transistors. There would need to be 8 variants of this circuit to create $\check{c_{k}}$ for $k=0 \ldots 7$. However,
(a) AND gate

(b) AND from Frank [12, Fig. 8]

(c) NAND, $-\hat{C}_{i}$ from [12, Fig. 9]

Fig. 5. (a) Definition of AND gate. (b) AND circuit based on S2LAL [4, Fig. 8], but modified for Q2LAL. (c) NAND circuit based on the S2LAL similar to OR gate [4, Fig. 9]. Becomes NAND, OR, NOR with input/output inversions.
the \check{c}_{k} 's are independent of data, so each signal can be shared across multiple gates.

Now notice that Fig. 4c and d, the three circuits that become the Q2LAL implementation, contain only \hat{A} and $-\hat{A}$, there is no A, so we define Q2LAL as S2LAL with the second rail logically instead of electrically inverted.

Since Q2LAL signals can be inverted by swapping their wires, AND, OR, NAND and NOR are equivalent up to the labeling of inputs and outputs. Fig. 5 describes a 2-input AND gate and hence demonstrates universality.

The AND gate symbol shown in Fig. 5a defines inputs $\pm \hat{A}$ and $\pm \hat{B}$ and output $\pm \hat{C}$, all as dual rail signals with positivegoing pulses. The $+\hat{C}$ pulse will appear when there are pulses on both inputs, which corresponds to a logical AND function. The $-\hat{C}$ pulse would appear in other circumstances, which are readily identified as the result of a logical NAND. Q2LAL uses separate circuitry for AND and NAND.

Q2LAL's AND-gate circuitry is the result of the same type of symbolic manipulation used in Fig. 4 to create the Q2LAL buffer. The AND circuit is the result of applying the symbolic manipulation to the S2LAL AND circuit. However, the NAND circuit starts out as a S2LAL OR gate with both inputs having their wires swapped and hence inverted.

The AND circuitry makes use of the clamp signal \check{c}_{k} described previously.

A. Circuit complexity

There are more transistors in Q2LAL's circuit than S2LAL's, but the two families are closer in complexity than one might think - and Q2LAL pulls ahead when one considers S2LAL's need for a second copy of a circuit for inversion. As described here, Q2LAL adds clamp transistors to what had

Fig. 6. (a) Circuit reference, generating repeating sequence 000100110111011001 . (b) S2LAL output \hat{Q} and \mathscr{Q} (red and black) showing one bit position in the circuit (c) S2LAL cumulative dissipation, showing variance as the number of 1s changes. (d) Q2LAL signaling, where either \hat{Q} or $-\hat{Q}$ is a 1 on each clock (e) Q2LAL dissipation, where the total number of 0 s and 1 s does not change and so the dissipation is constant.
been an adiabatic amplifier and a circuit to compute \check{c}_{k}. However, these extra costs are offset by some simplifications:

Signal \check{c}_{k} does not depend on data and can be generated once and serve up to, say, 10 gates before the electrical loading becomes excessive. Fig. 4 shows \check{c}_{k} generated by four transistors, but this could be taken as a 0.4 transistor share of a circuit that generates a standard signal.

Only waveform $\phi_{\hat{k}}$ is used in Fig. 4, i. e. ϕ_{k}^{2} does not appear. However, both $\phi_{\hat{k}}$ and ϕ_{k}^{k} are required for the equivalent transmission gate latch in S2LAL [4, Fig. 6]. This permits a circuit simplification called "nFET-only stages" [6]. A person familiar with the literature will realize that an nFET-only stage results from deleting the pFETs from transmission gates. This cuts transistor count but means that voltage swings will decrease slightly. However, a stage with full transmission gates can restore the voltage swings. Thus, the literature shows how to delete the pFETs in even-numbered stages, restoring full signal swing in odd-numbered stages.

B. Even load

Adiabatic circuits have been developed for computer security purposes that place a very even load on the power supply, such as EE-SPFAL [7]. Q2LAL has this even-load property, with this document showing how the even-load property can facilitate energy management.

For background, a differential power analysis (DPA) attack attempts to figure out secret information in a chip by measuring changes in power supply current. Fig. 6a is an exemplary circuit that cycles back and forth between being filled with 0 s and 1 s . If processing a 0 consumes a different
amount of power than a 1 , measuring the power supply current at a particular point in time may reveal the value of a certain data bit. While the analysis requires knowledge of the circuit and many trials, attackers find it worthwhile for obtaining high-value information such as passwords. There is literature on DPA, but further discussion of computer security is beyond the scope of this document. See ref. [8].

Fig. 6b and c show an ngspice simulation of cumulative energy dissipation of an S2LAL implementation of Fig. 6a and its signaling pattern in Fig. 6b. The curve is horizontal when the circuit is filled with 0 s , indicating low dissipation, but rises steeply when filled with 1 s , leading to the wavy appearance.

The two circuits in Fig. 4c differ only by swapping A 's with $-A$'s. If the circuits are laid out near each other and have similar geometry, the combined electrical characteristics will be the same irrespective of the data.

Fig. 6d is the signaling pattern for the same circuit implemented in Q2LAL, with its dissipation in Fig. 6e. One would expect a linear increase in dissipation over time, which is true to the resolution of the eye.

Q2LAL would thus be suitable for computer security applications, but its even-load feature can simplify most approaches to energy management.

If power-clocks are delivered to the adiabatic circuit via a transmission line, the load will distort the waveform. If the load does not change over time, the power-clock generator can apply a fixed predistortion such that that the predistorted signal plus the distortion caused by the line and the load will result in
the desired waveform. This will cause everything to work as expected.

If a resonant power supply is used for power-clocks, an uneven load will cause the energy consumption by the various harmonics-and their phase-to vary over time, creating the added task of regulating both the energy to each harmonic and adjusting its phase over time.

III. CONCLUSIONS

The new Q2LAL circuit combines ideas from traditional adiabatic logic and a branch developing around computer security. People investigating adiabatic logic for computer security have found circuit families that place a very even load on the power supply, yet computer security does not specifically require high energy efficiency. Q2LAL is fully adiabatic and has an even load, meaning that the purple arrow in Fig. 3 would extend forever if transistors had zero gate and source-drain leakage.

ACKNOWLEDGMENT

Michael P. Frank has made many contributions to reversible computing over the years. Mike championed the framework in Fig. 3b that contains at least four circuit families so far-plus versions within each family containing different numbers of cycles. Mike also developed S2LAL and a consistent terminology [4], both of which became a starting point for this work. This document uses Mike's terminology, including diagrams, with his permission.

REFERENCES

[1] Q2LAL has not been officially published previously, but the following document posted on the internet includes the Q2LAL circuit and attached ngspice code that generates figures in this document: DeBenedictis, Erik P., "Inversion for S2LAL." Zettaflops LLC Technical report ZF004, online at http://www.zettaflops.org/CATC/S2LAL_Inv_1.02.pdf
[2] Saed G. Younis. Asymptotically Zero Energy Computing Using Split Level Charge Recovery Logic. No. AI-TR-1500. Massachusetts Institute of Technology Artificial Intelligence Laboratory, 1994.
[3] V. Anantharam, M. He, K. Natarajan, H. Xie, and M. P. Frank. "Driving fully-adiabatic logic circuits using custom high-Q MEMS resonators," in Proc. Int. Conf. Embedded Systems and Applications and Proc. Int. Conf VLSI (ESA/VLSI). Las Vegas, NV, pp. 5-11.
[4] Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS," 2020 IEEE International Conference on Rebooting Computing (ICRC), Atlanta, GA, USA, 2020, pp. 1-8, doi: 10.1109/ICRC2020.2020.00014.
[5] W. C. Athas, L. "J." Svensson, J. G. Koller, N. Tzartzanis, and E. Y.-C. Chou, "Low-Power Digital Systems Based on Adiabatic-Switching Principles," IEEE Trans. VLSI Sys., vol. 2, no. 4, pp. 398-407, Dec. 1994.
[6] E. DeBenedictis, Enhancements to Adiabatic Logic for Quantum Computer Control Electronics, technical report ZF002, http://www.zettaflops.org/CATC.
[7] Kumar, S. Dinesh, Himanshu Thapliyal, and Azhar Mohammad. "EESPFAL: A Novel Energy-Efficient Secure Positive Feedback Adiabatic Logic for DPA Resistant RFID and Smart Card," in IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp. 281-293, 1 AprilJune 2019, doi: 10.1109/TETC.2016.2645128.
[8] Moradi, Amir, and Axel Poschmann. "Lightweight cryptography and DPA countermeasures: A survey." International Conference on Financial Cryptography and Data Security. Springer, Berlin, Heidelberg, 2010.

APPENDIX: NGSPICE FILE

The file below includes:

- S2LAL basic circuits
- Q2LAL basic circuits
- The even load comparison between the two, generating the graphs in Fig. 6.
- Testing for the AND gate circuits in Fig. 5.
- There is also code for testing an extended clock phase and modulating the onset of the ramp in the Q/S2LAL clocks.

The code uses built-in transistor models, which are based on obsolete transistors. Therefore, no absolute performance is revealed.

A. Q2LAL.cir

- Q2LaL
* Proprietary information of Zettaflops LLC. Not for public distribution
* Q2LAL initial test setup. Q2LAL is "quiet 2LAL" derived from Static 2-Level Adiabatic Logic (S2LAL). More information at the end of the file
* Instructions for duplicate the figures in [ZF008] and several PowerPoints:

To	1		in			e					
5	1	1	.67u	0	. 01	. 15	. 15	-5m	5 m	0	0
6	1	1	1 u	0	. 01	. 15	. 15	-5m	5 m	0	0
* 7	1	1	10u	0	. 01	. 15	. 15	-5m	5 m	0	0
* 8	1	1	100u	0	. 01	. 15	. 15	-5m	5 m	0	0
* 10	1	1	.67u	0	. 01	. 15	. 15	-200u	200u	0	0
* 11	1	1	1 u	0	. 01	. 15	. 15	-200u	200u	0	0
* 12	1	1	10u	0	. 01	. 15	. 15	-200u	200u	0	0
* 13	1	1	100u	0	. 01	. 15	. 15	-200u	200u	0	0

.param q2lal=1	\$ nonzero for q2lal; otherwise s2lal
.param periods=20	\$ number of repetitions of the basic waveform
.param period= 10u	\$ period of the clock waveform, which comprises a number of ticks
- param FastSlow=1	\$ 0 for regular clock 1 for several waveforms having fast and slow versions
.param Porch=. 1	\$ A tick as this proportion of 0 V gap at the start and end, so the spacing is twice this
.param GenT=. 15	\$ Gentle rise time as a proportion of the period
.param GenV=. 15	\$ Gentle rise voltage as a proportion of the voltage

. param GenV=.15 \$ Gentle rise voltage as a proportion of the voltage

* vertical scale must be set
. param dcc=0 \$ manage comments on lines identified BOOKMARK2\$ demonstrate data controlled clock [ZF005 Fig. 10] (consumes power when on)
-param $\mathrm{CWI}=0$ generate clamp waveform from (0) ngspice waveform generator or (1) [ZF008 Fig 8d] (consumes power when on)
-param ats=0
MODEL p1 pmos (LEVEL=49 version=3.3.0)
MODEL $\mathrm{n} 1 \mathrm{nmos}(L E V E L=49$ version=3.3.0)
-param CLAMP $=1 \quad$ \$ clamp transistor of Athas's adiabatic amplifier [Athas], set to 0 to disable
$\begin{aligned} \text { - param ACAP }=2 e-12 & \begin{array}{l}\text { (capacitive load on the data line } \\ \text {.param QQCAP }=0 \mathrm{e}-12\end{array} \\ & \$ \text { capacitive load on the internal QQ node }\end{aligned}$
*** SUBCIRCUIT DEFINITIONS
* [S2LAL Fig. 4], Athas's adiabatic amplifier but with complementary voltages on the two halves [Athas]
. SUBCKT AAMP AT AC T C piT piC GND PWR nsub psub ini='gg' \$ [Athas] adiabatic amplifier. Args: AT/C T/C clockT/C substrate supplies
.ic $V(T)=$ 'ini' $V(C)=' v v-i n i \quad$. \quad. ic $V(a)=\{g g\} \quad V(a 2)=$ ini
MO piT AT T nsub n1 \$ pass gate
M1 piT AC T psub p1
M2 piC AT C nsub n1
M2 piC AT C nsub n1 \$ pass gate
if (CLAMP=1)
M4 GND AC T nsub n1 \$ clamp
M5 PWR AT C psub pI
.endif
* [S2LAL Fig. 5]

R0 tap5 QT 1
X1 AT AC T C pit pic gnd PWR nsub psub AAMP ini='ini'
M1 T pjT $0 T$ nsub n1
$\begin{array}{lll}\text { M3 } & \text { C pjT } & \text { QC nsub n1 } \\ \text { M4 } & \text { p pj } & \text { QC psub p1 }\end{array}$
C1 AT 0 ACAP
C2 AC 0 ACAP
C3 T 0 QQCAP
C4 C QQCAP
* [S2LAL Fig. 6], except this is just the first stage; shift clocks for subsequent stages
.SUBCKT PHASE SOT SOC S1T S1C
.SUBCKT PHASE SOT SOC S1T S1C
+ p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub $\quad \$$ One stage of the 2LAL shift register. Args:
2 $4 x\{$ phi<n>T/C \} DC Supply substrate supplies
+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg'
X0 S0T S0C S1T S1C p1T p1C P0T p0C GND PWR nsub psub tap0 tap1 tap2 tap3 LATCH ini=in
X10 S1T S1C S0T S0C p2T p2C p3T p3C GND PWR nsub psub tap4 tap5 tap6 tap7 LATCH ini=ini
.ends PHASE


```
C2 AC O ACAP
C4 C O QQCAP
.ENDS qLatch
* One phase of a Q2LAL shift register [ZF008 Fig. 7b].
* Same role in framework as one loop of [S2LAL Fig. 6].
```



```
*11: phi (3) 12: -phi(3)
*15: nsub 16: psub 
*17:Q(i)^ 18: -Q(i)^ 19: q(i)^ 20: -q(i)^ 21: tap 22: tap 23: tap 24: tap (ane 2rage of the 2LAL shift register. Args: AT/C OT/C
+ p0T pOC p1T Cl1 p2T Cl2 p3T p3C GND PWR nsub psub $ two stage of the 2LAL shift register. Args: AT/C QT/C
+ p01 poc p1T C11 p2T C12 p3T p3C GND PWR nsub psub
ro tap0 t0 1
r0 tap0 t0 1
r2 tap2 t2 1
r3 tap3 t3 1
X0 SOT SOC S1T S1C p1T C11 p0T p0C GND PWR nsub psub t0 t1 tap4 tap5 qLatch ini=ini
X10 S1T S1C S0T S0C p2T C12 p3T p3C GND PWR nsub psub t2 t3 tap6 tap7 qLatch ini=ini
.ends qPhase
* 8 phases of a Q2LAL shift register [ZF008 Fig. 7b]. 
* : 
* 5: phi(0) 6: -phi(0) 7: phi(1) rrameni(1) 10: phi(2) 10: -phi(2) 11: phi(3) 12: -phi(3)
*13: phi(4) 14: -phi(4) 15: phi(5) 16: -phi(5) 17: phi(6) 18: -phi(6) 19:phi(7) 20: -phi(7)
*21: Clmp(0)v 22:Clmp(1)v 23: Clmp(2)v 24: Clmp(3)v 25: Clmp(4)v 26:Clmp(5)v 27: Clmp(6)v 28: Clmp (7)
*29: GND 30: PWR }310\mathrm{ 31: nsub 
*33: tap 34: tap 35: tap 36: tap $ Four phases that just delay. Args: 2*{ data<n>T/C }
+ + 0T p1T p2T p3T p4T p5T p6T p7T 
+ p0T p1T p2T p3T p4T p5T p6T p7T
+ tap8 tap9 tapA tapB
+. tapC tapD tapE tapF 'GND PWR nsub psub ini='gg' $ debugging taps and initialization
+ GND PWR nsub psub ini='gg'
R9 tap9 t110 1
RA tapA t120 1
RB tapB t130 1
RC tapC t140 1
RD tapD t150 
RE tape t160
X0 SOT SOC S1T S1C p0T p4T p1T Cl0 p2T C11 p3T p7T GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 qPhase ini=gg
X1 S1T S1C S2T S2C p1T p5T p2T C11 p3T C12 P4T p0T GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 qPhase ini=ini
N2 S2T S2C S3T S3C p2T p6T p3T C12 P4T C13 P5T p1T GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 qPhase ini=ini
X3 S3T S3C S4T S4C p3T p7T P4T C13 P5T C14 P6T p2T GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 qPhase ini=ini
X4 S4T S4C S5T S5C P4T p0T P5T Cl4 P6T C15 P7T p3T GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 qPhase ini=ini
```



```
X6 S6T S6C S7T S7C P6T p2T P7T C16 P0T C17 P1T p5T GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 qPhase ini=gg
X7 SiT SIC SOT SOC P7T p3T P0T C17 P1T ClO P2T p6T GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 qPhase ini=gg
* Clamp waveform [ZF008 Fig. 8d]. Operates in two modes:
* Production, where the wave is generated from four clocks [zF008 Fig. 8d].
* Testing, where the function is created from a hardcoded ngspice clock. This clock is included in the power computation.
* Choose by switch the condition between .if (1) and .if (0)
* 兑 Phi(i+4)^ 2: Phi (i-2)^ `
* 3: Phi (i-1)^ 4: Phi (i-1)v
SUBCKT Clp Pip4 Pim2 Pm1hat Pm1cup Test Clmp $Phi(i+4) Phi(i-2) Phi(i-1)hat Phi(i-1)cup Clamp(i)
.SUBCKT Clp Pip4 Pim2 Pm1hat Pm1cup Test Clmp 年 $ Phi(i+4) Phi(i-2)
+ nsub psub (cwf!=0)
M1 Pip4 Pm1cup Clmp psub p1 & pass gat
M2 Pim2 Pm1cup Clmp nsub n1 $ pass gate
M3 Pim2 Pm1hat Clmp psub p1
* C1 Clmp 0 5p
* R1 Test Clmp 0 $1000
                                    $ basically a direct connection
* C1 Clmp 0 10p
.ENDS Clp
* Special circuit waveform [ZF008 Fig. 10b].
* \! Phi(i-1)v 2! Phi(i+1)v
* 1:Phi (i-1)v 2: Phi (i+1)V
* 5: A(i-5)^ 6: -A (i-5)^
* 7: Phi(i)^ 8: J(i)^
* 7: Phi(i)^ 8: J(i)^ Pm1cup Pm1hat AT AC Picup J Spec Pip4 Pim2 Pmmcup Pm1, $ Phi(i+4) Phi(i-2) Phi(i-1)hat Phi(i-1)cup Clamp(i)
M0 Pip4 Pm1cup c nsub n1
M0 Pip4 Pm1cup c nsub n1
M2 Pim2 Pm1hat c nsub n1
M3 Pim2 Pm1cup c psub p1 $ pass gat
M4 VDD C J psub p1 $1 $c is c(i+3) hat
M4 VDD C J psub p1
M6 Picup AT J nsub n1
.ENDS Spec
* 8 phases of a Q2LAL shift register [ZF008 Fig. 7b].
* Same role in framework as one loop of [S2LAL Fig. 6].
* 1: so 2: -so
```



```
* 5: phi (0) 6: -phi(0) 7: phi(1) 8: -phi(1) 9: phi(2) 10: -phi(2) 11: phi (3) 12: -phi(3)
*13: phi(4) 14: -phi(4) 15: phi(5) 16: -phi(5) 17: phi(6) 18: -phi(6) 19: phi(7) 20: -phi(7)
*21: Clmp(0)v 22: Clmp(1)v 23: Clmp(2)v 24: Clmp(3)v 25: Clmp(4)v 26: Clmp(5)v 27: Clmp(6)v 28: Clmp (7)v
\(\begin{array}{llll}\text { *29: GND } & 30: \text { PWR } & \text { 31: nsub } & \text { 32: psub } \\ \text { *33: tap } & \text { 34: tap } & \text { 35: tap } & \text { 36: tap }\end{array}\)
*33: tap 34: tap 35: tap 36: tap \(\begin{aligned} & \text { 36 } \\ & \text {.SUBCKT qDataClock SiT SiC S7T S7C }\end{aligned}\) \$Four phases that just delay. Args: \(2 *\{\) data<n>T/C \}
. SUBCKT qDataClock SiT Sic S7T S7C
+ p0T p1T p2T
+
+ 10
C11
C12
+ J0 J1 J2 J3 J4 J5 J6 J7
\$ clocks/power supplies
\(\$\) clamps
\(\$\) Generated clocks. These are the "hat" clocks; \(J(n) v=J(n+4 \bmod 8)^{\wedge}\)
+ GND PWR nsub psub ini='gg' \$ DC Supply substrate supplies
x0 S0T SOC S1T S1C p0t p4t p1T C10 p2T Cl1 p3T p7t GND PWR nsub psub J1 t101 t102 t103 t200 t201 t202 t203 qPhase ini=gg
```

 S2 S2T S2C S3T S3C p2T p6T p3T C12 P4T C13 P5T p1T GND PWR nsub psub J3 t121 t122 t123 t220 t221 t222 t223 qPhase ini=ini $\begin{array}{llllllllllllllllllllll} & \text { S3T S3C S4T S4C P3T P7T P4T C13 P5T C14 P6T P2T GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 qPhase ini=ini } \\ \text { S4T }\end{array}$
 x6 S6T S6C S7T S7C P6T p2T P7T C16 P0T C17 P1T p5T GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 qPhase ini=gg * Selectively turn on/off the data-controlled clock. Connect clocks to PWR when off to avoid an error when trying to plot a disconnected node. .if (dcc!=0)

X10 p1T p3T p0T p4T S1T S1C p6T J6 PWR nsub psub Spec
X11 p2T p4T p1T p5T S2T S2C p7T J7 PWR nsub psub Spec
.else
R1 J5 PWR 1e6
$\begin{array}{llll}\text { R1 } & \text { J5 PWR } & \text { le6 } \\ \text { R2 } & \text { J6 } & \text { PWR } & \text { le6 }\end{array}$
R3 J7 PWR 1e6
.endif
.ENDS qDataClock
*** POWER-CLOCKS
.param $g g=0 \mathrm{~V}$
. param $\mathrm{vv}=9.99 \mathrm{v}$
*** CLOCkS -- Original 8 clock phases and inverses (total eight unique signals), but with slow and fast phase 1 's (total 12 unique signals)
.param simlen=periods*period $\quad \$$ length of the plot in time
Extra delay to split phio into a fast and slow clock; if Fast=0, the clocks become the same
See Saed G. Younis. Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic. No. AI-TR-1500. MIT AI Laboratory, 1994
.param (8+FastSlow*2)
§ regular: period/8; FastSlow: period/10
. param Ramp $=(1-2 *$ Porch $) *$ tick
reglar: tick, Fastslow: tick
\$ waveform is parameterized so there is a "porch" on either side of a ramp
\$ Parameters for three-segment ramp
param $R x=G e n T *$ Ramp
end time of initial gentle rise
.param Ry=(1-GenT)*Ramp
.param Rp=Ramp \$ total length of ramp
$\begin{array}{ll}\text {.param ticks=simlen/tick } & \begin{array}{l}\text { number of ticks in the simulation }\end{array} \\ \text {.param ttn }=18000 \mathrm{~ns} & \$ \text { integration time for energy }\end{array}$
.param ttn=18000ns
.param tstep $=25$ NS $*$ period $/ 10 u^{*}$ periods $/ 20$
\$ time of a simulation step, so number of steps is tick*ticks/tstep
The clocks comprise a series of transitions (separated by PPTs). Starting at the beginning of the three-phase cycle, the clock are computed by repeatedly s incrementing the time by the length of a transition and a PPT.
-param f0uS=PPT
-param 10uF=f0uS+Fast

- param f1up $=£ 0 \mathrm{uF}+$ Ramp $+2 \star$ PP
- param f2up=f1up+Ramp $+2 *$ PP
- param $f 3 u p=f 2$ up + Ramp $+2 *$ PP
- param f0dn $=f 3$ up + Ramp $+2 *$ PPT
- param f1dn $=f 0$ an + Ramp $+2 \times$ PP
-param $f 2 \mathrm{dS}=f 2 \mathrm{dF}+$ Fast
-param $£ 3 d n=f 2 d S+$ Ramp $+2 *$ PP
.param epoc=f3dn+Ramp+PPT
* Clamp waveforms that are high for one tick to clamp signals to ground. VCi is high on tick i-1. These are for testing only

Vc0	720	DC	vv	PWL ('0'	'vv'	'f0us'	'vv'	foustrx'		fous+Ry'	V2	'f0uS	'gg'	'2ds	'gg'	'f2dS+Rx'	v2'	f2dSt	V3	'f2dS+Rp'				
Vc1	721	DC	'vv'	PWL ('0'	'vv'	'f1up'	'vv'	'flup+Rx'	'v3'	'f1up+Ry'	'v2'	'f1up+Rp'	'gg'	'f3dn'	'gg'	'f3dn+Rx'	'v2'	'f3dn	'v3	'f $\mathrm{f} 3 \mathrm{dn}+\mathrm{Rp}$ '	vv	'epoc'	vv	
Vc2	722	DC	'gg'	PWL ('0'	'gg'	'f0us'	'gg'	f0u	'v2'	f0us+Ry	'v3	'f0us+Rp'	'vv'	'f2up'	'vv'	'f2up+Rx'	'v3'	'f2up+Ry	'v2	' $\mathrm{f2} \mathrm{up}+\mathrm{Rp}$ '	'gg'	'epoc'	gg	
vc3	723	DC	'gg'	PWL ('0'	'gg'	'flup	'gg'	flup	'v2'	'flup+Ry'	'v3'	'f1up+Rp'	'vy	f3up	'vv'	'f3up+Rx'	'v3'	'f3up+Ry	'v2'	'f3up+Rp'	gg'	'epoc'	'gg'	
vc4	724	DC	'gg'	PWL ('0	'gg'	'f2up	'gg'	'f2up+Rx'	'v2'	'f2up+Ry	v3'	' f2up+Rp	vv	'f0dn	'vv'	f0dn+Rx	'v3'	' f0dn + R	'v2'	' $\mathrm{f} 0 \mathrm{dn}+\mathrm{Rp}$	'gg'	'epoc'	'gg'	
vc5	725	0 DC	'gg'	PWL ('0	'gg'	'f3up	'gg'	'f3up	'v2'	'f3up+Ry	'v3'	'f3up+R	vv	'f1dr	'vv	'f1dn+Rx	'v3	'f1dn+1	'v2	'f1dn+R	'gg'	'epoc'	'gg'	')
Vc6	726	0 DC	'gg'	PW	'gg'	'f0dr	'gg'	'f0dn	'v2'	'f0dn+Ry'	v3'	'f0dn+R	'vv'	'f2dS	'vv	'f2dS+Rx'	'v3	'f2dS+R	'v2	'f2dS+R	gg'	'epoc'	'gg'	$r=0^{\prime \prime}$)
vc7	727	0 DC	gg ${ }^{\prime}$	PW	'g'	'f1d	'	f1d	'v2'	$\mathrm{f} 1 \mathrm{dn}+\mathrm{R}$	'v3'	, f1	'vv'	'f	'vv'	' $f 3 \mathrm{dn}+\mathrm{Rx}$	'v3		'v2		gg'	'epoc'	'gg'	,
ese are the power clocks, including separate fast and slow clocks																								
Vph	110	DC	'gg'	PWL ('gg'	'f0us'	'gg'	fous+Rx'	'v2'	'f0uS+Ry'	'v3'	'f0us+Rp'	,	'f0dn'	'vo'	f0dn+Rx'	'v3'	'f0dn+Ry'	'v2'	'f0dn+Rp'	'gg'	'epoc'	g9	= 0 ')
Vphiof	510	DC	'gg'	PWL ('0'	'gg'	'f0uF'	'gg'	f0uF+Rx'	'v2'	'f0uF+Ry'	'v3'	'f0uF+Rp'	'vv'	f0dn'	'vv'	'f0dn+Rx'	'v3'	'f0dn+Ry'	'v2'	'f0dn+Rp'	'gg'	'epoc'	'g9	= 0')
Vphilp	111	DC	'gg'	PWL ('0'	'gg'	'f1up'	'gg'	flup+Rx'	'v2'	'f1up+Ry'	'v3'	'f1up+Rp'	'vv'	'f1dn	'vv'	'f1dn+Rx'	'v3'	'f1dn+Ry'	'v2'	' $\mathrm{f1} 1 \mathrm{dn}+\mathrm{Rp}$ '	'gg'	'epoc'	'gg'	= 0 ')
Vphi2P	112	DC	'gg'	PWL ('0'	'gg'	'f2up'	'gg'	f2up+Rx'	'v2'	'f2up+Ry'	${ }^{\prime}$	'f2up+Rp'	vv	'f2ds'	'vv'	f2dS+Rx	'v3'	'f2dS+Ry	'v2'	'f2dS+Rp'	'gg'	'epoc'	'gg'	= 0 ')
Vph	512	DC	'gg'	PWL	'gg'	'f2up'	'gg'	'f2up+Rx	,	'f2up+Ry'		' $\mathrm{f} 2 \mathrm{up}+\mathrm{Rp}$	'vv'	12	'vv	12ar+r	, v3	'2dF+Ry	,	'f2dF+Rp	'gg'	'epoc'	gg'	= \mathbf{O}^{\prime})
vphi	113	DC	'gg'	PWL ('0'	'gg'	f3up	'gg'	'f3up+Rx'	v2	'f3up+Ry'	, ${ }^{1}$	'f3up+Rp	vv	'f3dn	'vv'	'f3dn+Rx	'v3'	'f3dn+Ry	v2	'f3dn+Rp'	'gg'	'epoc'	'gg'	= 0^{\prime} ')
Vphi4f	514	0 DC	'vv'	PWL ('0'	'vv'	'f0uF	'vv'	fouF+Rx'	'v3'	'f0uF+Ry'	'v2'	'f0uF+Rp	'gg'	'f0dn	'gg'	' $\mathrm{f} 0 \mathrm{dn}+\mathrm{Rx}$	'v2'	'f0dn+R	'v3'	'f0 $\mathrm{dn}+\mathrm{Rp}$	'vv	'epoc'	'vv'	$r=0^{\prime}$)
Vphi4P	114	0 DC	'vv'	PWL ('0'	'vv'	'f0us'	'vv'	fous+Rx'	'v3'	'f0uS+Ry'	'v2'	'f0us+Rp'	'gg'	'f0dn'	'gg'	'f0dn+Rx'	'v2'	'f0dn+Ry	'v3'	' $£ 0 \mathrm{dn}+\mathrm{Rp}$ '	'vv	'epoc'	'vv	= ${ }^{\prime}$ ')
Vphi5P	115	DC	'vv'	PWL ('0'	'vv'	'flup'	'vv'	flup+Rx'	'v3'	'f1up+Ry'	'v2'	'f1up+Rp'	'gg'	f1dn'	'gg'	f1dn+Rx	'v2'	'f1dn+R	'v3'	'f1dn+Rp'	vv	'epoc'	vv	='0')
Vphi6f	516	DC	vv'	PWL ('0'	'vv'	'f2up'	'vv'	f2up+Rx'	'v3'	f2up+Ry'	'v2'	'f2up+Rp'	'gg'	'f2dF'	'gg'	f2dF+Rx'	'v2'	'f2dF+Ry'	'v3'	'f2dF+Rp'	vv'	'epoc'	vv	= 0 ')
Vphi6P	116	DC	vv'	PWL ('0'	'vv'	'f2up'	'vv'	f2up+Rx'	'v3'	'f2up+Ry'	'v2'	'f2up+Rp'	'gg'	f2dS'	'gg'	f2dS+Rx'	'v2'	'f2dS+Ry'	'v3'	'f2dS+Rp'	vv'	'epoc'	vv'	c= 0^{\prime})
phi7p	117	DC	'vv'	PWL ('0'	'vv'	'f3up'	'vv'	'f3up+Rx'	'v3'	f3up+Ry'	'v2'	f3up+Rp'	'gg'	'f3dn'	'gg'	f3dn + Rx	'v2'	'f3dn+Ry	'v3'	'f3dn+Rp'	'vv	'epoc'	vv	

VGND 2000 DC 'gg'
*** top-Level Circuit
Initialization pattern gg gg vv results in 6-cycle 001000100110111011 ; pattern vv gg vv results in 2 -cycle 101010
Set the q2lal variable to 0 for a test of the quiet circuit and 1 for standard 2LAL

 X3 SYT SYC SZT SZC 110111112113114115116117710711712713714715716717 VV8 vv9 vVA vVB vVC vVD vVE vVF $200 \quad 201 \quad 200 \quad 201$ qDelay ini=gg
$\times 5 \quad 114116117113720710$ nsub psub Clp x6 $115117 \quad 110114721 \quad 711$ nsub psub Clp $\begin{array}{llllllll}\text { x7 } & 116 & 110 & 111 & 115 & 722 & 712 & \text { nsub psub Clp } \\ \text { x8 } & 117 & 111 & 112 & 116 & 723 & 713 & \text { nsub psub Clp }\end{array}$ $\begin{array}{lllllllll}\text { X8 } & 117 & 111 & 112 & 116 & 723 & 713 & \text { nsub } \\ \text { x9 } & 110 & 112 & 113 & 117 & 724 & 714 & \text { nsub psub } & \text { clp } \\ \text { R }\end{array}$ $\begin{array}{llllllll}\text { x10 } & 111 & 113 & 114 & 110 & 725 & 715 & \text { nsub psub Clp }\end{array}$ $\begin{array}{llllllll}\text { X11 } & 112 & 114 & 115 & 111 & 726 & 716 & \text { nsub psub Clp } \\ \text { x12 } & 113 & 115 & 116 & 112 & 727 & 717 & \text { nsub psub }\end{array}$
.if (ats)

* AND gate [ZF007 Fig. 9b and c] test process

First, create test inputs. Manually change the two q2lal registers so the initialization patterns are gg gg vv and vv gg vv. This will create period 6 and 2
repetition patterns. These pattern will naturally creates all four binary combinations of two bits in (for example) SAT/SAC and SXT/SXC. Enable the code below and the

* $+\mathrm{v}(113) / 49 \cdot 99 * 0.9+1.55+.100 * 10$
$*+v(112) / 49.99 * 0.9+1.55+.125 * 10$
$*+v(11) / 49.99 * 0.9+1.55+.150 * 10$
* $+v(111) / 49.99 * 0.9+1.55+.150 * 10$
* $\mathrm{v}(110) / 49.99 * 0.9+1.55+.175 * 10$
* end BоокмАRK2
* AND test code
* + v (oout) $/ 49.99 * 0.9+2.55+.175 * 10$
* +v (aout) $/ 49.99 * 0.9+2.55+.150 * 10$
* $+v(727) / 49.99 * 0.9+2.55+.125 * 10$
\$ NAND output, allows AND and NAND to be a two-rail signal (green)
\$ AND output (red)
\$ clamp c(i-1)v in [ZF008 Fig. 9b and c] (blue)
\$clock for the next phase, phi(i)^ in [ZF008 Fig. 9b and c] (yellow)
B input complementary value, asserted when B is 0 (magenta)
\& input complementary value, asserted when A is 0 (turquoise)
\$ B input (orange)
\$ A input (brown)
$+\mathrm{v}($ SXC $) / 49.99 * 0.9+2.55+.075 * 10$
* $+\mathrm{v}($ SXT $) / 49.99 * 0.9+2.55+.025 * 10$
+t + (uu8) / $9.99 * 0.9+2.55$
*These lines are the source of [ZF008 Fig. 12b and d]
$+\mathrm{v}(\mathrm{SAT}) / 9.99 * 0.9+0.55$
$+\mathrm{v}(\mathrm{SAC}) / 9.99 * 0.9+0.55+.05$
.endc
- END
* Q2LAL is a significant conceptual modification to S2LAL, albeit one that differs only in one transistor.
* Q2LAL is a significant conceptual modification to S2LAL, albeit one that differs only in one transistor.
* Q2LAL transmits bits in straightforward dual-rail, which means a 1 is a pulse from 0 V to Vdd. Using S2LAL terminology, this is a "hat" pulse, meaning it has
* the most positive voltage in the middle. A Q2LAL 0 is a "hat" pulse on a second wire. In contrast, S2LAL sends a 1 on two wires, a hat pulse like Q2LAL but also * an electrically inverted pulse on a different wire, i. e. a pulse from the idle Vdd state to 0 V . S2LAL sends a 0 by leaving both wires in the idle state.
* Tested with ngspice-30 (creation date Dec 28, 2018, from ngspice-30_64.zip 8,687,648 bytes)
* For tutorial docs: no tabs; comments start column 61; 169 character maximum line length
* Notation: A postive pulse A is designated in print with a circumflex (\wedge) diacritical mark. It may be designated here as "A-hat" or " A^{\wedge} "; a negative pulse is
* designated in print with a caron (v) diacritical mark. It may be designated here as "A-cup" or Av. In this notation, - A^{\wedge} does not mean $-\left(A^{\wedge}\right)=A v$ but rather (-A) ${ }^{\wedge}$,
* designated in print with a caron (v)
* a positive-going pulse when A is 0
* References:
* [ZF008] DeBenedictis, Erik. "Energy Management with Adiabatic Circuits." Technical report ZF008 (publication pending)
* [ZF007] http://zettaflops.org/CATC/DPA-Q2LAL.pdf December 19, 2020 Document ZF007
[Q2LALv2.ppt] Slide deck DPA-Q2LALv2.ppt January 2, 2021 Document ZF007, a non-public PowerPoint on Erik's computer
* [S2LAL] Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS." arXiv preprint arXiv:2009.00448 (2020).
* [Athas] Athas, W. C., et al. "Low-power digital systems based on adiabatic-switching principles." IEEE Transactions on VLSI Systems 2.4 (1994): 398-407

