

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Quiet 2-Level Adiabatic Logic
Zettaflops, LLC Technical Report ZF009

Erik P. DeBenedictis

Zettaflops, LLC

Albuquerque, New Mexico, USA

April 9, 2021

Abstract—This document defines Quiet 2-Level Adiabatic

Logic (Q2LAL), a variant of Static 2-Level Adiabatic Logic

(S2LAL). Q2LAL yields universal logic with two rails and places

a constant load on the power supply. In comparison, S2LAL

requires four rails for universal logic and four rails to achieve

constant load. The constant load is relevant to resistance to

Differential Power Analysis (DPA), a cyber security issue, and

also makes the power-clock generators simpler.

Keywords—adiabatic computing; reversible computing;

quantum computer; supercomputer; CMOS; cryo CMOS; Static 2-

Level Adiabatic Logic; S2LAL; Quiet 2-Level Adiabatic Logic;

Q2LAL

I. QUIET 2-LEVEL ADIABATIC LOGIC

This document formally defines Quiet 2-Level Adiabatic
logic (Q2LAL) [1].

At least four logic families, SCRL [2], 2LAL [3], S2LAL
[4] and now Q2LAL use a common circuit framework and the
same notation. Q2LAL can be most effectively explained by
symbolic manipulation of S2LAL’s circuit equations, which
requires knowledge of both S2LAL and the common notation.

This document only attempts to describe the basic shift
register, universal Boolean logic, and shows the even load
property via simulation.

II. DATA WAVEFORMS

Fig. 1 illustrates the signal waveforms for S2LAL and
Q2LAL. The primary signal waveforms are in the upper left of
Fig. 1a and b and called Ŝ and Q̂ depending on the logic family.
The primary waveform in both cases represents a 1 as a
positive-going pulse. The circumflex (hat) diacritical mark was
chosen because it looks like the waveform of a positive-going
pulse.

S2LAL’s second waveform in Fig. 1a is carried on a
second wire, or rail, that always carries the electrical
complement of the first waveform. This means the second wire
rests at supply voltage Vdd and has negative-going pulses
denoted Š. The caron (cup) diacritical mark was chosen
because it looks like the waveform of a negative going pulse.
The absence of a pulse represents a 0 in S2LAL.

S2LAL can store data in a shift register with the dual rail
signaling just described, but it requires two more rails to

implement universal logic. The other waveforms are found
below the first pair in Fig. 1a. These rails hold the logical
complement of the data on the first pair of rails.

Each rail requires a copy of the circuit. S2LAL requires
four rails to create universal adiabatic logic, but it would be
preferable to have fewer rails.

Q2LAL is dual rail as illustrated in Fig. 1b. Q2LAL signal
has two rails and two wires, both of which have a resting state
of 0. A positive-going pulse on one wire is called Q̂1

 and
indicates the transmission of 1, and likewise Q̂0 on the other
wire represents a 0.

S2LAL and Q2LAL use the same 8-phase power-clocks
illustrated in Fig. 2a, where the 8 phases are called ticks. If the

waveforms are considered positive pulses, they are denoted ̂i,
i=0…7, but they can also be considered negative pulses due to

symmetry. So, ̂i = ̌i+4 mod 8, i=0…7. A waveform should
follow a linear ramp for the entire duration of the tick. The
consistency of the ramp’s slope is critical to energy efficiency
in all adiabatic circuits, so the unfamiliar reader should not see
the ramps as just an artistic convenience.

Ŝ1

Vdd

0

Vdd

0

Vdd

0

Vdd

0

Vdd

0

Vdd

0

Q̂0

(a) S2LAL

(b) Q2LAL

Q̂1

Š0

Ŝ0

Š1

Tick #t Tick #t

0 1 2 0 1 2

Fig. 1. Signal waveforms. (a) Predecessor S2LAL is dual or quad

rail. (b) Q2LAL is dual rail. Notation from [4].

Ŝ1

Vdd

0

Vdd

0

Vdd

0

Vdd

0

Vdd

0

Vdd

0

Q̂0

(a) S2LAL

(b) Q2LAL

Q̂1

Š0

Ŝ0

Š1

Tick #t Tick #t

0 1 2 0 1 2

2

Both S2LAL and Q2LAL have the same data timing. The
data waveforms in Fig. 2b are pulses that are stable for 5 of 8
ticks. The other three ticks include one tick in the resting state
and two transition ticks.

All the logic families involve transmission gates. A pair of
back-to-back p- and n-channel field effect transistors (FETs)
appear as a rectangle with a line connected to the long side, as
shown in Fig. 3a. The line represents two complementary
electrical signals that go to the transistors’ gates. If the lines on
the short side of the rectangle are a quad-rail signal, the
rectangle implicitly represents two transmission gates or four
transistors, also illustrated in Fig. 3a.

The framework involves the coupled cycles in Fig. 3b,
where 8 cycles form a complete logic stage in both S2LAL and
Q2LAL.

The various families differ in the data representation on the
lines, the clock sequencing, and the circuitry in the functional
units. The lines in SCRL are trits with three signal levels of
Vdd/2, 0, and –Vdd/2, as opposed to more familiar bits with two
signal levels of Vdd and 0 in the other families.

Signals are defined by the clock phase or tick where the
level is valid, so a signal A could be denoted by Âi, where i
identifies the tick.

Prior to Q2LAL, circuits using the framework could
perform AND and OR logic functions but could not invert a
signal without doubling the number of rails. While there are
useful circuits that do not need inversion, such as memory,
inversion is needed for universal logic.

The effect of inversion in non-Q2LAL families can be
created by duplicating a circuit, except all ANDs are replaced
by ORs and vice-versa. If all input data provided to the original
circuit is also provided to the copy in a logically inverted form,
the two circuits will proceed in lockstep with corresponding
signals in the two circuits being logical inverses of each other.
With the setup just described, a signal can be inverted by
swapping it with the corresponding signal in the other circuit.
SCRL stages unavoidably invert data, leading to a similar
problem whose solution also requires a copy of the circuit.

However, a Q2LAL signal can be logically inverted by
swapping the two wires. There is no need to copy the circuit.

Let us derive Q2LAL by symbolic manipulation of
S2LAL’s circuit diagram. By replacing negative-going pulses
(cups) with functionally equivalent positive-going pulses (hats)

Tick #t

0 1 2 3 4 5 6 7

 ̂0 = ̌4

 ̂1 = ̌5

 ̂2 = ̌6

 ̂3 = ̌7

 ̂4 = ̌0

 ̂5 = ̌1

 ̂6 = ̌2

 ̂7 = ̌3

Ŝ0= D̂0

Ŝ1 = D̂1

Ŝ2 = D̂2

Ŝ3 = D̂3

Ŝ4 = D̂4

Ŝ5 = D̂5

Ŝ6 = D̂6

Ŝ7 = D̂7

(a) Clocks

(b) Signals

Fig 2. (a) Clocks and (b) data signaling formats are the same

between S2LAL and Q2LAL. ̂i = ̌i+4 mod 8, but this is not true for

the S’s. Notation from [4].

S

Ŝ S

2

2

2

 Š

 S S

(a) Transmission gates

(b) Framework (2 stages, 1 rail)

S3 S1

4

 ̂2
1

 ̂3
2

 ̂3
5

 ̂4

S2

F2 F3

R1 R2

2 2

Fig 3. (a) Transmission gate notation, notably including multi-rail.

(b) Emerging framework for a SCRL, 2LAL, S2LAL, and Q2LAL.

Notation from [4].

3

representing logically inverted data, we will create circuitry
that does not depend on negative-going pulses. This allows us
to delete the electrically complemented rail altogether,
simplifying the circuit.

Fig. 4 illustrates the circuitry within the triangular
structures of the framework called adiabatic amplifiers [5]. Fig.
4a is from S2LAL [4, Fig. 1], but expanding the transmission
gate into its two transistors and labeling the input with the
applicable phase. Fig. 4b is the same circuitry processing the

logically inverted signal −A.

The upper symbol Ǎi-1 in Fig. 4a enables one transistor of
the transmission gate that connects clock ϕ̂i to the output. In

Fig. 4c, we can replace this signal with −Âi-1 because the
alternative signal is stable at the correct level when needed to
gate the clock and is simply creating a redundant path to
ground at other times.

Likewise, the lower symbol Ǎi-1 in Fig. 4a enables the
transistor that clamps the output to ground. Replacing that

signal with −Âi-1 in Fig. 4c helps if the desired output is a 0 but
will leave the output floating between output pulses. This leads
us add a transistor gated by the signal či-1. Waveform čk is the
electrical inverse of D̂k in Fig. 2b. Thus, the signal či-1 goes
high during the period where the output needs to be clamped to
ground, irrespective of whether the output is a 0 or 1.

Fig. 4d shows how to create the čk signal for stage k from
four available clocks and four transistors. There would need to
be 8 variants of this circuit to create čk for k = 0…7. However,

the čk’s are independent of data, so each signal can be shared
across multiple gates.

Now notice that Fig. 4c and d, the three circuits that

become the Q2LAL implementation, contain only Â and −Â,
there is no Ǎ, so we define Q2LAL as S2LAL with the second
rail logically instead of electrically inverted.

Since Q2LAL signals can be inverted by swapping their
wires, AND, OR, NAND and NOR are equivalent up to the
labeling of inputs and outputs. Fig. 5 describes a 2-input AND
gate and hence demonstrates universality.

The AND gate symbol shown in Fig. 5a defines inputs Â

and B̂ and output Ĉ, all as dual rail signals with positive-
going pulses. The +Ĉ pulse will appear when there are pulses
on both inputs, which corresponds to a logical AND function.

The −Ĉ pulse would appear in other circumstances, which are
readily identified as the result of a logical NAND. Q2LAL uses
separate circuitry for AND and NAND.

Q2LAL’s AND-gate circuitry is the result of the same type
of symbolic manipulation used in Fig. 4 to create the Q2LAL
buffer. The AND circuit is the result of applying the symbolic
manipulation to the S2LAL AND circuit. However, the NAND
circuit starts out as a S2LAL OR gate with both inputs having
their wires swapped and hence inverted.

The AND circuitry makes use of the clamp signal čk
described previously.

A. Circuit complexity

There are more transistors in Q2LAL’s circuit than
S2LAL’s, but the two families are closer in complexity than
one might think—and Q2LAL pulls ahead when one considers
S2LAL’s need for a second copy of a circuit for inversion. As
described here, Q2LAL adds clamp transistors to what had

či-1

(a) S2LAL from Frank [4-Fran, Fig.

4]

(c) Q2LAL: replace cups; add extra clamp transistor

(d) helper signal for clamp; does not depend on data

č
i

ϕî ϕî

ϕî ϕî

ϕî+4

ϕî-2

i-1

i+3

Âi-1

Q̂i
−Âi-1

−Âi-1 −Âi-1

Âi-1
−Q̂i

Âi-1

či-1

Âi-1 −Âi-1 Ǎi-1

Ǎi-1 −Ǎi-1

−Ǎi-1

Q̂i −Q̂i

(b) same circuit for −A

Fig. 4. (a) Unlatched adiabatic buffer from [4, Fig. 4], (b) same

buffer for the negated signal, (c) however, the incoming cup signals

can be generated from the negated signals in the previous stage,
provided that a helper signal či is available. (d) The helper signal
can be generated once in an entire circuit from available clocks.

(b) AND from Frank [12, Fig. 8] (c) NAND, −Ĉi from [12, Fig. 9]

Ĉi

či-1 −B̂i-1 −Âi-1

či-1

−Âi-1

−B̂i-1

B̂i-1

ϕ̂i

Âi-1

−Âi-1

− Ĉi

B̂i-1

 B̂i-1

Âi-1 −B̂i-1

či-1 −B̂i-1

či-1

−Âi-1

Âi-1

B̂i-1

ϕ̂i

 ̂i
i-1

=

Ĉi

AND

 ̂i
i-1

− Ĉi NAND

Âi-1

B̂i-1

 Âi-1

B̂i-1

(a) AND gate

Âi-1

B̂i-1

Ĉi

Fig. 5. (a) Definition of AND gate. (b) AND circuit based on
S2LAL [4, Fig. 8], but modified for Q2LAL. (c) NAND circuit

based on the S2LAL similar to OR gate [4, Fig. 9]. Becomes
NAND, OR, NOR with input/output inversions.

4

been an adiabatic amplifier and a circuit to compute čk.
However, these extra costs are offset by some simplifications:

Signal čk does not depend on data and can be generated
once and serve up to, say, 10 gates before the electrical loading
becomes excessive. Fig. 4 shows čk generated by four
transistors, but this could be taken as a 0.4 transistor share of a
circuit that generates a standard signal.

Only waveform ϕ̂k is used in Fig. 4, i. e. ϕ̌k does not appear.
However, both ϕk̂ and ϕǩ are required for the equivalent
transmission gate latch in S2LAL [4, Fig. 6]. This permits a
circuit simplification called “nFET-only stages” [6]. A person
familiar with the literature will realize that an nFET-only stage
results from deleting the pFETs from transmission gates. This
cuts transistor count but means that voltage swings will
decrease slightly. However, a stage with full transmission gates
can restore the voltage swings. Thus, the literature shows how
to delete the pFETs in even-numbered stages, restoring full
signal swing in odd-numbered stages.

B. Even load

Adiabatic circuits have been developed for computer
security purposes that place a very even load on the power
supply, such as EE-SPFAL [7]. Q2LAL has this even-load
property, with this document showing how the even-load
property can facilitate energy management.

For background, a differential power analysis (DPA) attack
attempts to figure out secret information in a chip by
measuring changes in power supply current. Fig. 6a is an
exemplary circuit that cycles back and forth between being
filled with 0s and 1s. If processing a 0 consumes a different

amount of power than a 1, measuring the power supply current
at a particular point in time may reveal the value of a certain
data bit. While the analysis requires knowledge of the circuit
and many trials, attackers find it worthwhile for obtaining
high-value information such as passwords. There is literature
on DPA, but further discussion of computer security is beyond
the scope of this document. See ref. [8].

Fig. 6b and c show an ngspice simulation of cumulative
energy dissipation of an S2LAL implementation of Fig. 6a and
its signaling pattern in Fig. 6b. The curve is horizontal when
the circuit is filled with 0s, indicating low dissipation, but rises
steeply when filled with 1s, leading to the wavy appearance.

The two circuits in Fig. 4c differ only by swapping A’s with

−A’s. If the circuits are laid out near each other and have
similar geometry, the combined electrical characteristics will
be the same irrespective of the data.

Fig. 6d is the signaling pattern for the same circuit
implemented in Q2LAL, with its dissipation in Fig. 6e. One
would expect a linear increase in dissipation over time, which
is true to the resolution of the eye.

Q2LAL would thus be suitable for computer security
applications, but its even-load feature can simplify most
approaches to energy management.

If power-clocks are delivered to the adiabatic circuit via a
transmission line, the load will distort the waveform. If the load
does not change over time, the power-clock generator can
apply a fixed predistortion such that that the predistorted signal
plus the distortion caused by the line and the load will result in

(b) S2LAL signaling (d) Q2LAL signaling

Flip

D Q

Flop

Flip

D Q

Flop

Flip

D Q

Flop

(a) Circuit reference

(c) S2LAL + inverter (e) Q2LAL + inverter

Fig. 6. (a) Circuit reference, generating repeating sequence 000 100 110 111 011 001. (b) S2LAL output Q̂ and Q̌ (red and black) showing one

bit position in the circuit (c) S2LAL cumulative dissipation, showing variance as the number of 1s changes. (d) Q2LAL signaling, where either

Q̂ or −Q̂ is a 1 on each clock (e) Q2LAL dissipation, where the total number of 0s and 1s does not change and so the dissipation is constant.

5

the desired waveform. This will cause everything to work as
expected.

If a resonant power supply is used for power-clocks, an
uneven load will cause the energy consumption by the various
harmonics—and their phase—to vary over time, creating the
added task of regulating both the energy to each harmonic and
adjusting its phase over time.

III. CONCLUSIONS

The new Q2LAL circuit combines ideas from traditional
adiabatic logic and a branch developing around computer
security. People investigating adiabatic logic for computer
security have found circuit families that place a very even load
on the power supply, yet computer security does not
specifically require high energy efficiency. Q2LAL is fully
adiabatic and has an even load, meaning that the purple arrow
in Fig. 3 would extend forever if transistors had zero gate and
source-drain leakage.

ACKNOWLEDGMENT

Michael P. Frank has made many contributions to
reversible computing over the years. Mike championed the
framework in Fig. 3b that contains at least four circuit families
so far—plus versions within each family containing different
numbers of cycles. Mike also developed S2LAL and a
consistent terminology [4], both of which became a starting
point for this work. This document uses Mike’s terminology,
including diagrams, with his permission.

REFERENCES

[1] Q2LAL has not been officially published previously, but the following
document posted on the internet includes the Q2LAL circuit and
attached ngspice code that generates figures in this document:
DeBenedictis, Erik P., “Inversion for S2LAL.” Zettaflops LLC
Technical report ZF004, online at
http://www.zettaflops.org/CATC/S2LAL_Inv_1.02.pdf

[2] Saed G. Younis. Asymptotically Zero Energy Computing Using Split
Level Charge Recovery Logic. No. AI-TR-1500. Massachusetts Institute
of Technology Artificial Intelligence Laboratory, 1994.

[3] V. Anantharam, M. He, K. Natarajan, H. Xie, and M. P. Frank. “Driving
fully-adiabatic logic circuits using custom high-Q MEMS resonators,” in
Proc. Int. Conf. Embedded Systems and Applications and Proc. Int. Conf
VLSI (ESA/VLSI). Las Vegas, NV, pp. 5-11.

[4] Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static,
Fully Adiabatic CMOS," 2020 IEEE International Conference on
Rebooting Computing (ICRC), Atlanta, GA, USA, 2020, pp. 1-8, doi:
10.1109/ICRC2020.2020.00014.

[5] W. C. Athas, L. “J.” Svensson, J. G. Koller, N. Tzartzanis, and E. Y.-C.
Chou, “Low-Power Digital Systems Based on Adiabatic-Switching
Principles,” IEEE Trans. VLSI Sys., vol. 2, no. 4, pp. 398–407, Dec.
1994.

[6] E. DeBenedictis, Enhancements to Adiabatic Logic for Quantum
Computer Control Electronics, technical report ZF002,
http://www.zettaflops.org/CATC.

[7] Kumar, S. Dinesh, Himanshu Thapliyal, and Azhar Mohammad. "EE-
SPFAL: A Novel Energy-Efficient Secure Positive Feedback Adiabatic
Logic for DPA Resistant RFID and Smart Card," in IEEE Transactions
on Emerging Topics in Computing, vol. 7, no. 2, pp. 281-293, 1 April-
June 2019, doi: 10.1109/TETC.2016.2645128.

[8] Moradi, Amir, and Axel Poschmann. "Lightweight cryptography and
DPA countermeasures: A survey." International Conference on
Financial Cryptography and Data Security. Springer, Berlin,
Heidelberg, 2010.

6

APPENDIX: NGSPICE FILE

The file below includes:

• S2LAL basic circuits

• Q2LAL basic circuits

• The even load comparison between the two, generating the graphs in Fig. 6.

• Testing for the AND gate circuits in Fig. 5.

• There is also code for testing an extended clock phase and modulating the onset of the ramp in the Q/S2LAL clocks.

The code uses built-in transistor models, which are based on obsolete transistors. Therefore, no absolute performance is revealed.

A. Q2LAL.cir

 Q2LAL

* Proprietary information of Zettaflops LLC. Not for public distribution.

* Q2LAL initial test setup. Q2LAL is "quiet 2LAL" derived from Static 2-Level Adiabatic Logic (S2LAL). More information at the end of the file.

*

* Instructions for duplicate the figures in [ZF008] and several PowerPoints:

* Fig q2lal periods period FastSlow Porch GentleT GentleV ylimit dcc cwf

* 12c 0 20 10u 1 .1 .15 .15 -200u 200u 0 0

* 12e 1 20 10u 1 .1 .15 .15 -200u 200u 0 0

* 13a 1 1 .67u 0 .01 .15 .15 -5m 5m 0 0

* 13b 1 1 1u 0 .01 .15 .15 -5m 5m 0 0

* 13c 1 1 10u 0 .01 .15 .15 -5m 5m 0 0

* 13d 1 1 100u 0 .01 .15 .15 -5m 5m 0 0

* 13+ 1 1 100u 0 .01 .15 .15 -400m 400m 0 0

* xxx 1 1 10u 0 .01 .05 .15 -400m 400m 0 0

* xxx 1 1 100u 0 .01 .05 .15 -50m 50m 0 0

* To duplicate slides in [Q2LALv2.ppt]. Slide number:

* 5 1 1 .67u 0 .01 .15 .15 -5m 5m 0 0

* 6 1 1 1u 0 .01 .15 .15 -5m 5m 0 0

* 7 1 1 10u 0 .01 .15 .15 -5m 5m 0 0

* 8 1 1 100u 0 .01 .15 .15 -5m 5m 0 0

* 10 1 1 .67u 0 .01 .15 .15 -200u 200u 0 0

* 11 1 1 1u 0 .01 .15 .15 -200u 200u 0 0

* 12 1 1 10u 0 .01 .15 .15 -200u 200u 0 0

* 13 1 1 100u 0 .01 .15 .15 -200u 200u 0 0

* Slide deck [ZF007] is the same as above but Porch is .1

* ??? 1 20 10u 0 .01 .15 .15 -5m 5m 1 1

.param q2lal=1 $ nonzero for q2lal; otherwise s2lal

.param periods=20 $ number of repetitions of the basic waveform

.param period= 10u $ period of the clock waveform, which comprises a number of ticks

.param FastSlow=1 $ 0 for regular clock 1 for several waveforms having fast and slow versions

.param Porch=.1 $ A tick as this proportion of 0 V gap at the start and end, so the spacing is twice this

.param GenT=.15 $ Gentle rise time as a proportion of the period

.param GenV=.15 $ Gentle rise voltage as a proportion of the voltage

* vertical scale must be set manually on lines identified BOOKMARK1

.param dcc=0 $ manage comments on lines identified BOOKMARK2$ demonstrate data controlled clock [ZF005 Fig. 10] (consumes power when on)

.param cwf=0 $ generate clamp waveform from (0) ngspice waveform generator or (1) [ZF008 Fig 8d] (consumes power when on)

.param ats=0 $ include code to test AND gates. Wire swap inversions turn AND into NAND, OR, and NOR

* There are three sets of plot commands at the end. Comment out either "plot" or "gnuplot"

.MODEL p1 pmos(LEVEL=49 version=3.3.0)

.MODEL n1 nmos(LEVEL=49 version=3.3.0)

.param CLAMP=1 $ clamp transistor of Athas's adiabatic amplifier [Athas], set to 0 to disable

.param ACAP=2e-12 $ capacitive load on the data line

.param QQCAP=0e-12 $ capacitive load on the internal QQ node

*** SUBCIRCUIT DEFINITIONS

* [S2LAL Fig. 4], Athas's adiabatic amplifier but with complementary voltages on the two halves [Athas]

.SUBCKT AAMP AT AC T C piT piC GND PWR nsub psub ini='gg' $ [Athas] adiabatic amplifier. Args: AT/C T/C clockT/C substrate supplies

.ic V(T)='ini' V(C)='vv-ini' $.ic V(a)={gg} V(a2)=ini

M0 piT AT T nsub n1 $ pass gate

M1 piT AC T psub p1

M2 piC AT C nsub n1 $ pass gate

M3 piC AC C psub p1

.if (CLAMP=1)

M4 GND AC T nsub n1 $ clamp

M5 PWR AT C psub p1

.endif

.ENDS AAMP

* [S2LAL Fig. 5]

.SUBCKT LATCH AT AC QT QC piT piC pjT pjC GND PWR $ One phase of the 2LAL shift register. Args: AT/C QT/C clock0T/C clock1T/C

+ nsub psub tap0 tap1 tap2 tap3 ini='gg' $ substrate supplies

R0 tap5 QT 1 $ circuit taps for debugging

X1 AT AC T C piT piC GND PWR nsub psub AAMP ini='ini'

M1 T pjT QT nsub n1 $ Frank's latch

M2 T pjC QT psub p1

M3 C pjT QC nsub n1 $ Frank's latch

M4 C pjC QC psub p1

C1 AT 0 ACAP

C2 AC 0 ACAP

C3 T 0 QQCAP

C4 C 0 QQCAP

.ENDS LATCH

* [S2LAL Fig. 6], except this is just the first stage; shift clocks for subsequent stages

.SUBCKT PHASE S0T S0C S1T S1C $ One stage of the 2LAL shift register. Args: AT/C QT/C

+ p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub $ 4x{ phi<n>T/C } DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg'

X0 S0T S0C S1T S1C p1T p1C p0T p0C GND PWR nsub psub tap0 tap1 tap2 tap3 LATCH ini=ini

X10 S1T S1C S0T S0C p2T p2C p3T p3C GND PWR nsub psub tap4 tap5 tap6 tap7 LATCH ini=ini

.ends PHASE

7

* [S2LAL Fig. 6], except this is all 8 stages

.SUBCKT SDELAY S0T S0C S8T S8C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p1T p2T p3T p4T p5T p6T p7T $ clocks/power supplies

+ GND PWR nsub psub $ DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 tap8 tap9 tapA tapB ini='gg'

R0 tap0 S0T 1 $ circuit taps for debugging

R1 tap1 S0C 1

R2 tap2 S1T 1

R3 tap3 S1C 1

R4 tap4 S2T 1

R5 tap5 S2C 1

R6 tap6 S3T 1

R7 tap7 S3C 1

R8 tap8 S4T 1

R9 tap9 S4C 1

RA tapA S5T 1

RB tapB S5C 1

RC tapC S6T 1

RD tapD S6C 1

RE tapE S7T 1

RF tapF S7C 1

X0 S0T S0C S1T S1C p0T p4T p1T p5T p2T p6T p3T p7T GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 PHASE ini=gg

X1 S1T S1C S2T S2C p1T p5T p2T p6T p3T p7T P4T p0T GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 PHASE ini=ini

X2 S2T S2C S3T S3C p2T p6T p3T p7T P4T p0T P5T p1T GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 PHASE ini=ini

X3 S3T S3C S4T S4C p3T p7T P4T p0T P5T p1T P6T p2T GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 PHASE ini=ini

X4 S4T S4C S5T S5C P4T p0T P5T p1T P6T p2T P7T p3T GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 PHASE ini=ini

X5 S5T S5C S6T S6C P5T p1T P6T p2T P7T p3T P0T p4T GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 PHASE ini=ini

X6 S6T S6C S7T S7C P6T p2T P7T p3T P0T p4T P1T p5T GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 PHASE ini=gg

X7 S7T S7C S8T S8C P7T p3T P0T p4T P1T p5T P2T p6T GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 PHASE ini=gg

.ENDS SDELAY

* This is an inverting version of the phase circuit. It simply reverses the input wires.

.SUBCKT PHASEv S0T S0C S1T S1C $ One stage of the 2LAL shift register. Args: AT/C QT/C

+ p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub $ 4x{ phi<n>T/C } DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg'

X0 S0C S0T S1T S1C p1T p1C p0T p0C GND PWR nsub psub tap0 tap1 tap2 tap3 LATCH ini=ini

X10 S1C S1T S0T S0C p2T p2C p3T p3C GND PWR nsub psub tap4 tap5 tap6 tap7 LATCH ini=ini

.ends PHASEv

* This is an inverting version of the delay circuit. It simply calls PHASEv at a point that doesn't interfere with initialization.

.SUBCKT SDELAYv S0T S0C S8T S8C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p1T p2T p3T p4T p5T p6T p7T $ clocks/power supplies

+ GND PWR nsub psub $ DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 tap8 tap9 tapA tapB ini='gg'

R0 tap0 S0T 1 $ circuit taps for debugging

R1 tap1 S0C 1

R2 tap2 S1T 1

R3 tap3 S1C 1

R4 tap4 S2T 1

R5 tap5 S2C 1

R6 tap6 S3T 1

R7 tap7 S3C 1

R8 tap8 S4T 1

R9 tap9 S4C 1

RA tapA S5T 1

RB tapB S5C 1

RC tapC S6T 1

RD tapD S6C 1

RE tapE S7T 1

RF tapF S7C 1

X0 S0T S0C S1T S1C p0T p4T p1T p5T p2T p6T p3T p7T GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 PHASE ini=gg

X1 S1T S1C S2T S2C p1T p5T p2T p6T p3T p7T P4T p0T GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 PHASE ini=ini

X2 S2T S2C S3T S3C p2T p6T p3T p7T P4T p0T P5T p1T GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 PHASE ini=ini

X3 S3T S3C S4T S4C p3T p7T P4T p0T P5T p1T P6T p2T GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 PHASE ini=ini

X4 S4T S4C S5T S5C P4T p0T P5T p1T P6T p2T P7T p3T GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 PHASE ini=ini

X5 S5T S5C S6T S6C P5T p1T P6T p2T P7T p3T P0T p4T GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 PHASE ini=ini

X6 S6T S6C S7T S7C P6T p2T P7T p3T P0T p4T P1T p5T GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 PHASEv ini=gg

X7 S7T S7C S8T S8C P7T p3T P0T p4T P1T p5T P2T p6T GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 PHASE ini=gg

.ENDS SDELAYv

* Erik's "two hat" adiabatic amplifier. In S2LAL notation, it expects data input as A^ and -A^. Given this, it produces the correct output [ZF008 Fig. 8c (both sides)].

* Same role in framework as [S2LAL Fig. 4], Athas's adiabatic amplifier but with complementary voltages on the two halves [Athas]

* : : : : : : : : :

* 1: A(i-1)^ 2: -A(i-1)^

* 3: Q(i)^ 4: Q(i)^

* 5: phi(i)^ 6: Clmp(i-1)v

* 7: GND

* 8: nsub 9: psub

.SUBCKT QAAmp AT AC T C pT Cl GND nsub psub ini='gg' $ Erik's adiabatic amplifier. Args: AT/C T/C clock&clamp substrate supplies

.ic V(T)='ini' V(C)='vv-ini' $.ic V(a)={gg} V(a2)=ini

M0 pT AT T nsub n1 $ pass gate

M1 pT AC T psub p1

M2 pT AC C nsub n1 $ pass gate

M3 pT AT C psub p1

.if (CLAMP=1)

M4 GND AC T nsub n1 $ clamp

M5 GND AT C nsub n1

M6 GND Cl T nsub n1 $ clamp

M7 GND Cl C nsub n1

.endif

.ENDS QAAmp

* This is the latched version; it is just a QAAmp followed by a pass gate.

* Erik's "two hat" adiabatic amplifier plus pass gate. In S2LAL notation, it expects data input as A^ and -A^. Given this, it produces the correct output

* re. (a) [ZF008 Fig. 8c] followed by two pass gates or (b) [ZF008 Fig. 9a, right side] but a non-inverting buffer instead of an AND gate.

* Same role in framework as [S2LAL Fig. 5 (left)].

* : : : : : : : : :

* 1: A(i-1)^ 2: -A(i-1)^

* 3: C(i)^ 4: -C(i)^

* 5: phi(i)^ 6: Clmp(i-1)v

* 7: phi(j)^ 8: phi(j)v

* 9: GND 10: PWR

*11: nsub 12: psub

*13: Q(i)^ 14: -Q(i)^ 15: tap 16: tap

.SUBCKT qLatch AT AC QT QC piT Cli pjT pjC GND PWR $ One phase of the 2LAL shift register. Args: AT/C QT/C clockiT&clamp clockjT/C

+ nsub psub tap0 tap1 tap2 tap3 ini='gg' $ substrate supplies

r0 tap0 T 1 $ green

r1 tap1 C 1 $ red

r2 tap2 piT 1e9 $ blue

r3 tap3 Cli 1e9 $ yellow

X1 AT AC T C piT Cli GND nsub psub QAAmp ini='ini'

M1 T pjT QT nsub n1 $ Frank's latch

M2 T pjC QT psub p1

M3 C pjT QC nsub n1 $ Frank's latch

M4 C pjC QC psub p1

C1 AT 0 ACAP

8

C2 AC 0 ACAP

C3 T 0 QQCAP

C4 C 0 QQCAP

.ENDS qLatch

* One phase of a Q2LAL shift register [ZF008 Fig. 7b].

* Same role in framework as one loop of [S2LAL Fig. 6].

* : : : : : : : : :

* 1: S0 2: -S0

* 3: S1 4: -S1

* 5: phi(0) 6: -phi(0) 7: phi(1) 8: -phi(1) 9: phi(2) 10: -phi(2)

*11: phi(3) 12: -phi(3)

*13: GND 14: PWR

*15: nsub 16: psub

*17: Q(i)^ 18: -Q(i)^ 19: q(i)^ 20: -q(i)^ 21: tap 22: tap 23: tap 24: tap

.SUBCKT qPhase S0T S0C S1T S1C $ One stage of the 2LAL shift register. Args: AT/C QT/C

+ p0T p0C p1T Cl1 p2T Cl2 p3T p3C GND PWR nsub psub $ two clocks T/C and two clocks T&clamp DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg'

r0 tap0 t0 1

r1 tap1 t1 1

r2 tap2 t2 1

r3 tap3 t3 1

X0 S0T S0C S1T S1C p1T Cl1 p0T p0C GND PWR nsub psub t0 t1 tap4 tap5 qLatch ini=ini

X10 S1T S1C S0T S0C p2T Cl2 p3T p3C GND PWR nsub psub t2 t3 tap6 tap7 qLatch ini=ini

.ends qPhase

* 8 phases of a Q2LAL shift register [ZF008 Fig. 7b].

* Same role in framework as one loop of [S2LAL Fig. 6].

* : : : : : : : : :

* 1: S0 2: -S0

* 3: S8 4: -S8

* 5: phi(0) 6: -phi(0) 7: phi(1) 8: -phi(1) 9: phi(2) 10: -phi(2) 11: phi(3) 12: -phi(3)

*13: phi(4) 14: -phi(4) 15: phi(5) 16: -phi(5) 17: phi(6) 18: -phi(6) 19: phi(7) 20: -phi(7)

*21: Clmp(0)v 22: Clmp(1)v 23: Clmp(2)v 24: Clmp(3)v 25: Clmp(4)v 26: Clmp(5)v 27: Clmp(6)v 28: Clmp(7)

*29: GND 30: PWR 31: nsub 32: psub

*33: tap 34: tap 35: tap 36: tap

.SUBCKT qDelay SiT SiC S7T S7C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p1T p2T p3T p4T p5T p6T p7T $ clocks/power supplies

+ Cl0 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 $ clamps

+ tap8 tap9 tapA tapB $ debugging taps

+ tapC tapD tapE tapF $ debugging taps and initialization

+ GND PWR nsub psub ini='gg' $ DC Supply substrate supplies

R8 tap8 t100 1

R9 tap9 t110 1

RA tapA t120 1

RB tapB t130 1

RC tapC t140 1

RD tapD t150 1

RE tapE t160 1

RF tapF t170 1

X0 S0T S0C S1T S1C p0T p4T p1T Cl0 p2T Cl1 p3T p7T GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 qPhase ini=gg

X1 S1T S1C S2T S2C p1T p5T p2T Cl1 p3T Cl2 P4T p0T GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 qPhase ini=ini

X2 S2T S2C S3T S3C p2T p6T p3T Cl2 P4T Cl3 P5T p1T GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 qPhase ini=ini

X3 S3T S3C S4T S4C p3T p7T P4T Cl3 P5T Cl4 P6T p2T GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 qPhase ini=ini

X4 S4T S4C S5T S5C P4T p0T P5T Cl4 P6T Cl5 P7T p3T GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 qPhase ini=ini

X5 S5T S5C S6T S6C P5T p1T P6T Cl5 P7T Cl6 P0T p4T GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 qPhase ini=ini

X6 S6T S6C S7T S7C P6T p2T P7T Cl6 P0T Cl7 P1T p5T GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 qPhase ini=gg

X7 SiT SiC S0T S0C P7T p3T P0T Cl7 P1T Cl0 P2T p6T GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 qPhase ini=gg

.ENDS qDelay

* Clamp waveform [ZF008 Fig. 8d]. Operates in two modes:

* Production, where the wave is generated from four clocks [ZF008 Fig. 8d].

* Testing, where the function is created from a hardcoded ngspice clock. This clock is included in the power computation.

* Choose by switch the condition between .if (1) and .if (0)

* : : : : : : : : :

* 1: Phi(i+4)^ 2: Phi(i-2)^

* 3: Phi(i-1)^ 4: Phi(i-1)v

* 5: Test 6: Clmp(i)v

.SUBCKT Clp Pip4 Pim2 Pm1hat Pm1cup Test Clmp $ Phi(i+4) Phi(i-2) Phi(i-1)hat Phi(i-1)cup Clamp(i)

+ nsub psub $ Substrate supplies

.if (cwf!=0)

M0 Pip4 Pm1hat Clmp nsub n1 $ pass gate

M1 Pip4 Pm1cup Clmp psub p1

M2 Pim2 Pm1cup Clmp nsub n1 $ pass gate

M3 Pim2 Pm1hat Clmp psub p1

* C1 Clmp 0 5p

.else

R1 Test Clmp 0 $1000 $ basically a direct connection

* C1 Clmp 0 10p

.endif

.ENDS Clp

* Special circuit waveform [ZF008 Fig. 10b].

* : : : : : : : : :

* 1: Phi(i-1)v 2: Phi(i+1)v

* 3: Phi(i+2)^ 4: Phi(i+2)v

* 5: A(i-5)^ 6: -A(i-5)^

* 7: Phi(i)^ 8: J(i)^

.SUBCKT Spec Pip4 Pim2 Pm1cup Pm1hat AT AC Picup J $ Phi(i+4) Phi(i-2) Phi(i-1)hat Phi(i-1)cup Clamp(i)

+ VDD nsub psub $ Substrate supplies

M0 Pip4 Pm1cup c nsub n1 $ pass gate

M1 Pip4 Pm1hat c psub p1

M2 Pim2 Pm1hat c nsub n1 $ pass gate

M3 Pim2 Pm1cup c psub p1

M4 VDD c J psub p1 $ c is c(i+3)hat

M5 VDD AT J psub p1

M6 Picup AT J nsub n1

M7 Picup AC J psub p1

.ENDS Spec

* 8 phases of a Q2LAL shift register [ZF008 Fig. 7b].

* Same role in framework as one loop of [S2LAL Fig. 6].

* : : : : : : : : :

* 1: S0 2: -S0

* 3: S8 4: -S8

* 5: phi(0) 6: -phi(0) 7: phi(1) 8: -phi(1) 9: phi(2) 10: -phi(2) 11: phi(3) 12: -phi(3)

*13: phi(4) 14: -phi(4) 15: phi(5) 16: -phi(5) 17: phi(6) 18: -phi(6) 19: phi(7) 20: -phi(7)

*21: Clmp(0)v 22: Clmp(1)v 23: Clmp(2)v 24: Clmp(3)v 25: Clmp(4)v 26: Clmp(5)v 27: Clmp(6)v 28: Clmp(7)v

*29: GND 30: PWR 31: nsub 32: psub

*33: tap 34: tap 35: tap 36: tap

.SUBCKT qDataClock SiT SiC S7T S7C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p1T p2T p3T p4T p5T p6T p7T $ clocks/power supplies

+ Cl0 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 $ clamps

+ J0 J1 J2 J3 J4 J5 J6 J7 $ Generated clocks. These are the "hat" clocks; J(n)v = J(n + 4 mod 8)^

+ GND PWR nsub psub ini='gg' $ DC Supply substrate supplies

X0 S0T S0C S1T S1C p0T p4T p1T Cl0 p2T Cl1 p3T p7T GND PWR nsub psub J1 t101 t102 t103 t200 t201 t202 t203 qPhase ini=gg

9

X1 S1T S1C S2T S2C p1T p5T p2T Cl1 p3T Cl2 P4T p0T GND PWR nsub psub J2 t111 t112 t113 t210 t211 t212 t213 qPhase ini=ini

X2 S2T S2C S3T S3C p2T p6T p3T Cl2 P4T Cl3 P5T p1T GND PWR nsub psub J3 t121 t122 t123 t220 t221 t222 t223 qPhase ini=ini

X3 S3T S3C S4T S4C p3T p7T P4T Cl3 P5T Cl4 P6T p2T GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 qPhase ini=ini

X4 S4T S4C S5T S5C P4T p0T P5T Cl4 P6T Cl5 P7T p3T GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 qPhase ini=ini

X5 S5T S5C S6T S6C P5T p1T P6T Cl5 P7T Cl6 P0T p4T GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 qPhase ini=ini

X6 S6T S6C S7T S7C P6T p2T P7T Cl6 P0T Cl7 P1T p5T GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 qPhase ini=gg

X7 SiT SiC S0T S0C P7T p3T P0T Cl7 P1T Cl0 P2T p6T GND PWR nsub psub J0 t171 t172 t173 t270 t271 t272 t273 qPhase ini=gg

* Selectively turn on/off the data-controlled clock. Connect clocks to PWR when off to avoid an error when trying to plot a disconnected node.

.if (dcc!=0)

X8 p7T p1T p6T p2T SiT SiC p4T J4 PWR nsub psub Spec

X9 p0T p2T p7T p3T S0T S0C p5T J5 PWR nsub psub Spec

X10 p1T p3T p0T p4T S1T S1C p6T J6 PWR nsub psub Spec

X11 p2T p4T p1T p5T S2T S2C p7T J7 PWR nsub psub Spec

.else

R0 J4 PWR 1e6

R1 J5 PWR 1e6

R2 J6 PWR 1e6

R3 J7 PWR 1e6

.endif

.ENDS qDataClock

*** POWER-CLOCKS

.param gg= 0V

.param vv= 9.99V

*** CLOCKS -- Original 8 clock phases and inverses (total eight unique signals), but with slow and fast phase 1's (total 12 unique signals)

.param simlen=periods*period $ length of the plot in time

$ Extra delay to split phi0 into a fast and slow clock; if Fast=0, the clocks become the same

$ See Saed G. Younis. Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic. No. AI-TR-1500. MIT AI Laboratory, 1994.

.param tick=period/(8+FastSlow*2) $ regular: period/8; FastSlow: period/10

.param Fast=FastSlow*tick $ regular: tick; FastSlow: tick

.param Ramp=(1-2*Porch)*tick $ waveform is parameterized so there is a "porch" on either side of a ramp

.param PPT=Porch*tick $ one PPT at beginning and end of sequence, two of these PPTs between ramps

$ Parameters for three-segment ramp

.param Rx=GenT*Ramp $ end time of initial gentle rise

.param v2=GenV*vv $ end height of initial gentle rise

.param Ry=(1-GenT)*Ramp $ start time of final gentle rise

.param v3=(1-GenV)*vv $ start height of final gentle rise

.param Rp=Ramp $ total length of ramp

.param ticks=simlen/tick $ number of ticks in the simulation

.param ttn=18000ns $ integration time for energy

.param tstep=25NS*period/10u*periods/20 $ time of a simulation step, so number of steps is tick*ticks/tstep

$ The clocks comprise a series of transitions (separated by PPTs). Starting at the beginning of the three-phase cycle, the clock are computed by repeatedly

$ incrementing the time by the length of a transition and a PPT.

.param f0uS=PPT

.param f0uF=f0uS+Fast

.param f1up=f0uF+Ramp+2*PPT

.param f2up=f1up+Ramp+2*PPT

.param f3up=f2up+Ramp+2*PPT

.param f0dn=f3up+Ramp+2*PPT

.param f1dn=f0dn+Ramp+2*PPT

.param f2dF=f1dn+Ramp+2*PPT

.param f2dS=f2dF+Fast

.param f3dn=f2dS+Ramp+2*PPT

.param epoc=f3dn+Ramp+PPT

* Clamp waveforms that are high for one tick to clamp signals to ground. VCi is high on tick i-1. These are for testing only.

* Each can be generated with four transistors from existing clocks. They only connect to transistor gates, so they do not need a lot of drive capability.

Vc0 720 0 DC 'vv' PWL('0' 'vv' 'f0uS' 'vv' 'f0uS+Rx' 'v3' 'f0uS+Ry' 'v2' 'f0uS+Rp' 'gg' 'f2dS' 'gg' 'f2dS+Rx' 'v2' 'f2dS+Ry' 'v3' 'f2dS+Rp' 'vv' 'epoc' 'vv' r='0')

Vc1 721 0 DC 'vv' PWL('0' 'vv' 'f1up' 'vv' 'f1up+Rx' 'v3' 'f1up+Ry' 'v2' 'f1up+Rp' 'gg' 'f3dn' 'gg' 'f3dn+Rx' 'v2' 'f3dn+Ry' 'v3' 'f3dn+Rp' 'vv' 'epoc' 'vv' r='0')

Vc2 722 0 DC 'gg' PWL('0' 'gg' 'f0uS' 'gg' 'f0uS+Rx' 'v2' 'f0uS+Ry' 'v3' 'f0uS+Rp' 'vv' 'f2up' 'vv' 'f2up+Rx' 'v3' 'f2up+Ry' 'v2' 'f2up+Rp' 'gg' 'epoc' 'gg' r='0')

Vc3 723 0 DC 'gg' PWL('0' 'gg' 'f1up' 'gg' 'f1up+Rx' 'v2' 'f1up+Ry' 'v3' 'f1up+Rp' 'vv' 'f3up' 'vv' 'f3up+Rx' 'v3' 'f3up+Ry' 'v2' 'f3up+Rp' 'gg' 'epoc' 'gg' r='0')

Vc4 724 0 DC 'gg' PWL('0' 'gg' 'f2up' 'gg' 'f2up+Rx' 'v2' 'f2up+Ry' 'v3' 'f2up+Rp' 'vv' 'f0dn' 'vv' 'f0dn+Rx' 'v3' 'f0dn+Ry' 'v2' 'f0dn+Rp' 'gg' 'epoc' 'gg' r='0')

Vc5 725 0 DC 'gg' PWL('0' 'gg' 'f3up' 'gg' 'f3up+Rx' 'v2' 'f3up+Ry' 'v3' 'f3up+Rp' 'vv' 'f1dn' 'vv' 'f1dn+Rx' 'v3' 'f1dn+Ry' 'v2' 'f1dn+Rp' 'gg' 'epoc' 'gg' r='0')

Vc6 726 0 DC 'gg' PWL('0' 'gg' 'f0dn' 'gg' 'f0dn+Rx' 'v2' 'f0dn+Ry' 'v3' 'f0dn+Rp' 'vv' 'f2dS' 'vv' 'f2dS+Rx' 'v3' 'f2dS+Ry' 'v2' 'f2dS+Rp' 'gg' 'epoc' 'gg' r='0')

Vc7 727 0 DC 'gg' PWL('0' 'gg' 'f1dn' 'gg' 'f1dn+Rx' 'v2' 'f1dn+Ry' 'v3' 'f1dn+Rp' 'vv' 'f3dn' 'vv' 'f3dn+Rx' 'v3' 'f3dn+Ry' 'v2' 'f3dn+Rp' 'gg' 'epoc' 'gg' r='0')

* These are the power clocks, including separate fast and slow clocks

Vphi0P 110 0 DC 'gg' PWL('0' 'gg' 'f0uS' 'gg' 'f0uS+Rx' 'v2' 'f0uS+Ry' 'v3' 'f0uS+Rp' 'vv' 'f0dn' 'vv' 'f0dn+Rx' 'v3' 'f0dn+Ry' 'v2' 'f0dn+Rp' 'gg' 'epoc' 'gg' r='0')

Vphi0f 510 0 DC 'gg' PWL('0' 'gg' 'f0uF' 'gg' 'f0uF+Rx' 'v2' 'f0uF+Ry' 'v3' 'f0uF+Rp' 'vv' 'f0dn' 'vv' 'f0dn+Rx' 'v3' 'f0dn+Ry' 'v2' 'f0dn+Rp' 'gg' 'epoc' 'gg' r='0')

Vphi1P 111 0 DC 'gg' PWL('0' 'gg' 'f1up' 'gg' 'f1up+Rx' 'v2' 'f1up+Ry' 'v3' 'f1up+Rp' 'vv' 'f1dn' 'vv' 'f1dn+Rx' 'v3' 'f1dn+Ry' 'v2' 'f1dn+Rp' 'gg' 'epoc' 'gg' r='0')

Vphi2P 112 0 DC 'gg' PWL('0' 'gg' 'f2up' 'gg' 'f2up+Rx' 'v2' 'f2up+Ry' 'v3' 'f2up+Rp' 'vv' 'f2dS' 'vv' 'f2dS+Rx' 'v3' 'f2dS+Ry' 'v2' 'f2dS+Rp' 'gg' 'epoc' 'gg' r='0')

Vphi2f 512 0 DC 'gg' PWL('0' 'gg' 'f2up' 'gg' 'f2up+Rx' 'v2' 'f2up+Ry' 'v3' 'f2up+Rp' 'vv' 'f2dF' 'vv' 'f2dF+Rx' 'v3' 'f2dF+Ry' 'v2' 'f2dF+Rp' 'gg' 'epoc' 'gg' r='0')

Vphi3P 113 0 DC 'gg' PWL('0' 'gg' 'f3up' 'gg' 'f3up+Rx' 'v2' 'f3up+Ry' 'v3' 'f3up+Rp' 'vv' 'f3dn' 'vv' 'f3dn+Rx' 'v3' 'f3dn+Ry' 'v2' 'f3dn+Rp' 'gg' 'epoc' 'gg' r='0')

Vphi4f 514 0 DC 'vv' PWL('0' 'vv' 'f0uF' 'vv' 'f0uF+Rx' 'v3' 'f0uF+Ry' 'v2' 'f0uF+Rp' 'gg' 'f0dn' 'gg' 'f0dn+Rx' 'v2' 'f0dn+Ry' 'v3' 'f0dn+Rp' 'vv' 'epoc' 'vv' r='0')

Vphi4P 114 0 DC 'vv' PWL('0' 'vv' 'f0uS' 'vv' 'f0uS+Rx' 'v3' 'f0uS+Ry' 'v2' 'f0uS+Rp' 'gg' 'f0dn' 'gg' 'f0dn+Rx' 'v2' 'f0dn+Ry' 'v3' 'f0dn+Rp' 'vv' 'epoc' 'vv' r='0')

Vphi5P 115 0 DC 'vv' PWL('0' 'vv' 'f1up' 'vv' 'f1up+Rx' 'v3' 'f1up+Ry' 'v2' 'f1up+Rp' 'gg' 'f1dn' 'gg' 'f1dn+Rx' 'v2' 'f1dn+Ry' 'v3' 'f1dn+Rp' 'vv' 'epoc' 'vv' r='0')

Vphi6f 516 0 DC 'vv' PWL('0' 'vv' 'f2up' 'vv' 'f2up+Rx' 'v3' 'f2up+Ry' 'v2' 'f2up+Rp' 'gg' 'f2dF' 'gg' 'f2dF+Rx' 'v2' 'f2dF+Ry' 'v3' 'f2dF+Rp' 'vv' 'epoc' 'vv' r='0')

Vphi6P 116 0 DC 'vv' PWL('0' 'vv' 'f2up' 'vv' 'f2up+Rx' 'v3' 'f2up+Ry' 'v2' 'f2up+Rp' 'gg' 'f2dS' 'gg' 'f2dS+Rx' 'v2' 'f2dS+Ry' 'v3' 'f2dS+Rp' 'vv' 'epoc' 'vv' r='0')

Vphi7P 117 0 DC 'vv' PWL('0' 'vv' 'f3up' 'vv' 'f3up+Rx' 'v3' 'f3up+Ry' 'v2' 'f3up+Rp' 'gg' 'f3dn' 'gg' 'f3dn+Rx' 'v2' 'f3dn+Ry' 'v3' 'f3dn+Rp' 'vv' 'epoc' 'vv' r='0')

VGND 200 0 DC 'gg'

VPWR 201 0 DC 'vv'

*** TOP-LEVEL CIRCUIT

* Initialization pattern gg gg vv results in 6-cycle 001 000 100 110 111 011; pattern vv gg vv results in 2-cycle 101 010

* Set the q2lal variable to 0 for a test of the quiet circuit and 1 for standard 2LAL

.if (q2lal!=0)

X0 SAT SAC SBT SBC 110 111 112 113 114 115 116 117 710 711 712 713 714 715 716 717 pp8 pp9 ppA ppB ppC ppD ppE ppF 200 201 200 201 qDataClock ini=gg $ flip for cycle...

X1 SBT SBC SCT SCC 110 111 112 113 114 115 116 117 710 711 712 713 714 715 716 717 uu8 uu9 uuA uuB uuC uuD uuE uuF 200 201 200 201 qDelay ini=gg

X5 SCT SCC SAC SAT 110 111 112 113 114 115 116 117 710 711 712 713 714 715 716 717 xx8 xx9 xxA xxB xxC xxD xxE xxF 200 201 200 201 qDelay ini=vv

X2 SXT SXC SYT SYC 110 111 112 113 114 115 116 117 710 711 712 713 714 715 716 717 qq8 qq9 qqA qqB qqC qqD qqE qqF 200 201 200 201 qDelay ini=gg

X3 SYT SYC SZT SZC 110 111 112 113 114 115 116 117 710 711 712 713 714 715 716 717 vv8 vv9 vvA vvB vvC vvD vvE vvF 200 201 200 201 qDelay ini=gg

X4 SZT SZC SXC SXT 110 111 112 113 114 115 116 117 710 711 712 713 714 715 716 717 ww8 ww9 wwA wwB wwC wwD wwE wwF 200 201 200 201 qDelay ini=vv

X5 114 116 117 113 720 710 nsub psub Clp $ VPhi4P VPhi6P VPhi7P VPhi3P C0

X6 115 117 110 114 721 711 nsub psub Clp $ VPhi5P VPhi7P VPhi0P VPhi4P C1

X7 116 110 111 115 722 712 nsub psub Clp $ VPhi6P VPhi0P VPhi1P VPhi5P C2

X8 117 111 112 116 723 713 nsub psub Clp $ VPhi7P VPhi1P VPhi2P VPhi6P C3

X9 110 112 113 117 724 714 nsub psub Clp $ VPhi0P VPhi2P VPhi3P VPhi7P C4

X10 111 113 114 110 725 715 nsub psub Clp $ VPhi1P VPhi3P VPhi4P VPhi0P C5

X11 112 114 115 111 726 716 nsub psub Clp $ VPhi2P VPhi4P VPhi5P VPhi1P C6

X12 113 115 116 112 727 717 nsub psub Clp $ VPhi3P VPhi5P VPhi6P VPhi2P C7

.if (ats)

* AND gate [ZF007 Fig. 9b and c] test process.

* First, create test inputs. Manually change the two q2lal registers so the initialization patterns are gg gg vv and vv gg vv. This will create period 6 and 2

* repetition patterns. These pattern will naturally creates all four binary combinations of two bits in (for example) SAT/SAC and SXT/SXC. Enable the code below and the

10

* "AND test code" plotting. This code below will then compute the AND and NAND function to wires aout and oout. Set FastSlow to 0 to avoid going bonkers.

M1 110 SAT t1 200 n1 $ 1. AND function. Two series transmission gates pass the clock when both inputs are asserted

M2 110 SAC t1 201 p1 $ 2.

M3 t1 SXT aout 200 n1 $ 3. Second transmission gate

M4 t1 SXC aout 201 p1 $ 4.

M5 t1 SAC aout 200 n1 $ 5. Internal node clamp

M6 t1 727 aout 200 n1 $ 6. Idle internal node clamp

M7 0 SAC aout 200 n1 $ 7. Output pull down

M8 0 727 aout 200 n1 $ 8. Idle output clamp

M9 0 SXC aout 200 n1 $ 9. Output pull down

M10 110 SAC oout 200 n1 $ 1. NAND function. Two parallel transmission gates pass the clock when both inputs are asserted

M11 110 SAT oout 201 p1 $ 2.

M12 110 SXC oout 200 n1 $ 3. Second transmission gate

M13 110 SXT oout 201 p1 $ 4

M14 t2 SAT oout 200 n1 $ 5. Output pull down

M15 0 727 oout 200 n1 $ 6. Idle clamp

M16 t2 SXC oout 200 n1 $ 7. Internal node clamp

M17 t2 SXT oout 201 p1 $ 8.

M18 0 SXT t2 200 n1 $ 9. Output pull down

M19 t2 727 oout 200 n1 $ 10. Idle clamp

.endif

.else

X0 SAT SAC SBT SBC 110 111 112 113 114 115 116 117 200 201 200 201 pp4 pp5 pp6 pp7 pp8 pp9 ppA ppB ppC ppD ppE ppF SDELAY ini=gg $ flip for cycle...

X1 SBT SBC SCT SCC 110 111 112 113 114 115 116 117 200 201 200 201 uu0 uu1 uu2 uu3 uu4 uu5 uu6 uu7 uu8 uu9 uuA uuB SDELAY ini=gg

X5 SCT SCC SAT SAC 110 111 112 113 114 115 116 117 200 201 200 201 xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7 xx8 xx9 xxA xxB SDELAYv ini=vv

X2 SXT SXC SYT SYC 110 111 112 113 114 115 116 117 200 201 200 201 qq0 qq1 qq2 qq3 qq4 qq5 qq6 qq7 qq8 qq9 qqA qqB SDELAY ini=gg

X3 SYT SYC SZT SZC 110 111 112 113 114 115 116 117 200 201 200 201 vv0 vv1 vv2 vv3 vv4 vv5 vv6 vv7 vv8 vv9 vvA vvB SDELAY ini=gg

X4 SZT SZC SXT SXC 110 111 112 113 114 115 116 117 200 201 200 201 ww0 ww1 ww2 ww3 ww4 ww5 ww6 ww7 ww8 ww9 wwA wwB SDELAYv ini=vv

.endif

* power and energy calculation

B4 0 16 V=0

+ +I(Vc0)*v(720)+I(Vc1)*v(721)+I(Vc2)*v(722)+I(Vc3)*v(723)+I(Vc4)*v(724)+I(Vc5)*v(725)+I(Vc6)*v(726)+I(Vc7)*v(727)

+ +I(vphi0P)*v(110)+I(vphi1P)*v(111)+I(vphi2P)*v(112)+I(vphi3P)*v(113)+I(vphi4P)*v(114)+I(vphi5P)*v(115)+I(vphi6P)*v(116)+I(vphi7P)*v(117)

+ +I(vphi0f)*v(510)+I(vphi2f)*v(512)+I(vphi4f)*v(514)+I(vphi6f)*v(116)

+ +I(VGND)*v(200)+I(VPWR)*v(201)

A1 16 17 power_tally

.model power_tally int(in_offset=0.0 gain=1.0 out_lower_limit=-1e12 out_upper_limit=1e12 limit_range=1e-9 out_ic=0.0)

.option noinit acct

$ NGSPICE CONTROL AREA

.TRAN 'tstep' 'ticks*tick'

.csparam slen = 'simlen*1e6'

.csparam prds = 'periods'

.csparam epch = 'epoc*1e6'

.csparam ticu = 'tick*1e6'

.csparam ntks = 'ticks'

.csparam tste = 'tstep*1e9'

.csparam fstp = 'Fast*1e6'

.csparam rmpu = Ramp*1e6

.control

pre_set strict_errorhandling

unset ngdebug

echo "*******************Sim: $&slen us=$&prds*$&epch us. Tick: $&ticu us=$&ntks*$&tste ns. Rmp: $&rmpu us. Fast $&fstp us."

run

* measure power consumption

meas tran Energy1us INTEG v(16) from=0 to=5us

meas tran EnergyLev INTEG v(16) 'from=5us to=ttn'

echo -------------------Results $&Energy1us , $&EnergyLev

echo Results , $&Energy1us , $&EnergyLev >>Q2LAL.csv

* white background

set color0=white

* black grid and text (only needed with X11, automatic with MS Win)

set color1=black

* wider grid and plot lines

set xbrushwidth=1

set xgridwidth=1

set hcopypscolor=1

set hcopyscale=4

set hcopypstxcolor=2

set hcopyfontsize=3

set gnuplot_terminal=png

$ plot $ plot clock current

gnuplot gp/clkcur

+ title "Clock current. Sim: $&slen us=$&prds*$&epch us. Tick: $&ticu us=$&ntks*$&tste ns. Rmp: $&rmpu us. Fast $&fstp us."

$ + ylimit -5m 5m $ BOOKMARK1

+ ylimit -200u 200u $ BOOKMARK1

+ I(Vphi0P) I(Vphi0f) I(Vphi1P) I(Vphi2P) I(Vphi2f) I(Vphi3P) I(Vphi4f) I(Vphi4P) I(Vphi5P) I(Vphi6f) I(Vphi6P) I(Vphi7P)

plot $ plot instantaneous energy consumption

$ gnuplot gp/power

+ title "Dissipation. Sim: $&slen us=$&prds*$&epch us. Tick: $&ticu us=$&ntks*$&tste ns. Rmp: $&rmpu us. Fast $&fstp us."

+ ylimit -25m 25m

+ v(16)

plot $ plot accumulated energy dissipation

$ gnuplot gp/energy

+ title "Cum. dissipation. Sim: $&slen us=$&prds*$&epch us. Tick: $&ticu us=$&ntks*$&tste ns. Rmp: $&rmpu us. Fast $&fstp us."

+ ylimit 0 70n

+ v(17)

plot ylimit 0 7 xlimit 0 50u

$ gnuplot gp/traces ylimit 0 7 xlimit 0 200u

+ title "3-stage Q2LAL/S2LAL inverting shift register"

+ v(ppF)/49.99*0.9+ 4.55+.000*10

+ v(ppE)/49.99*0.9+ 4.55+.025*10

+ v(ppD)/49.99*0.9+ 4.55+.050*10

+ v(ppC)/49.99*0.9+ 4.55+.075*10

+ v(ppB)/49.99*0.9+ 4.55+.100*10

+ v(ppA)/49.99*0.9+ 4.55+.125*10

+ v(pp9)/49.99*0.9+ 4.55+.150*10

+ v(pp8)/49.99*0.9+ 4.55+.175*10

+

* These lines create a non-controlled set of waveforms to make [ZF008 Fig. 10a] more understandable BOOKMARK2

* + v(117)/49.99*0.9+ 1.55+.000*10

* + v(116)/49.99*0.9+ 1.55+.025*10

* + v(115)/49.99*0.9+ 1.55+.050*10

* + v(114)/49.99*0.9+ 1.55+.075*10

11

* + v(113)/49.99*0.9+ 1.55+.100*10

* + v(112)/49.99*0.9+ 1.55+.125*10

* + v(111)/49.99*0.9+ 1.55+.150*10

* + v(110)/49.99*0.9+ 1.55+.175*10

* end BOOKMARK2

+

* AND test code

* + v(oout)/49.99*0.9+2.55+.175*10 $ NAND output, allows AND and NAND to be a two-rail signal (green)

* + v(aout)/49.99*0.9+2.55+.150*10 $ AND output (red)

* + v(727)/49.99*0.9+2.55+.125*10 $ clamp c(i-1)v in [ZF008 Fig. 9b and c] (blue)

* + v(117)/49.99*0.9+2.55+.100*10 $ clock for the next phase, phi(i)^ in [ZF008 Fig. 9b and c] (yellow)

* + v(SXC)/49.99*0.9+2.55+.075*10 $ B input complementary value, asserted when B is 0 (magenta)

* + v(SAC)/49.99*0.9+2.55+.050*10 $ A input complementary value, asserted when A is 0 (turquoise)

* + v(SXT)/49.99*0.9+2.55+.025*10 $ B input (orange)

* + v(SAT)/49.99*0.9+2.55+.000*10 $ A input (brown)

+

+ v(uu8)/9.99*0.9+2.55

+

* These lines are the source of [ZF008 Fig. 12b and d]

+ v(SAT)/9.99*0.9+ 0.55

+ v(SAC)/9.99*0.9+ 0.55+.05

.endc

.END

* Notes:

* Q2LAL is a significant conceptual modification to S2LAL, albeit one that differs only in one transistor.

* Q2LAL transmits bits in straightforward dual-rail, which means a 1 is a pulse from 0 V to Vdd. Using S2LAL terminology, this is a "hat" pulse, meaning it has

* the most positive voltage in the middle. A Q2LAL 0 is a "hat" pulse on a second wire. In contrast, S2LAL sends a 1 on two wires, a hat pulse like Q2LAL but also

* an electrically inverted pulse on a different wire, i. e. a pulse from the idle Vdd state to 0 V. S2LAL sends a 0 by leaving both wires in the idle state.

*

* Tested with ngspice-30 (creation date Dec 28, 2018, from ngspice-30_64.zip 8,687,648 bytes)

*

* For tutorial docs: no tabs; comments start column 61; 169 character maximum line length

*

* Notation: A postive pulse A is designated in print with a circumflex (^) diacritical mark. It may be designated here as "A-hat" or "A^"; a negative pulse is

* designated in print with a caron (v) diacritical mark. It may be designated here as "A-cup" or Av. In this notation, -A^ does not mean -(A^) = Av but rather (-A)^,

* a positive-going pulse when A is 0

*

* References:

* [ZF008] DeBenedictis, Erik. "Energy Management with Adiabatic Circuits." Technical report ZF008 (publication pending)

* [ZF007] http://zettaflops.org/CATC/DPA-Q2LAL.pdf December 19, 2020 Document ZF007

* [Q2LALv2.ppt] Slide deck DPA-Q2LALv2.ppt January 2, 2021 Document ZF007, a non-public PowerPoint on Erik's computer

* [S2LAL] Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS." arXiv preprint arXiv:2009.00448 (2020).

* [Athas] Athas, W. C., et al. "Low-power digital systems based on adiabatic-switching principles." IEEE Transactions on VLSI Systems 2.4 (1994): 398-407

