

1

Enhancements to Adiabatic Logic for Quantum
Computer Control Electronics

Technical report ZF002 v1.02, February 20, 2020

Erik P. DeBenedictis
Zettaflops, LLC, Albuquerque, NM 87112

erikdebenedictis@zettaflops.org

Abstract
This report improves upon what was originally the T-Gate shift register1 and renamed to 2-Level Adiabatic

Logic (2LAL) by Mike Frank when he enhanced it into a logic family.2, 3 This report also offers

improvements to the SCRL logic family.4

2LAL and SCRL have been proposed as energy efficient alternatives to room-temperature CMOS, a goal

that depends upon high throughput and high speed. However, this report applies to quantum computer

control electronics where Josephson junctions are available for logic functions but transistor circuitry

such as 2LAL and SCRL provide much higher density for memory and subfunctions requiring high

complexity. Since high speed and high throughput are available from Josephson junctions, the

transistorized logic has less need for these attributes.

To better serve quantum computer control applications, this report includes improvements to the

clocking structure to support inverting gates without doubling the number of logic rails and reducing

density.

The clocking improvements also make the design of data permutation logic more efficient. This is an

important optimization because some common digital building blocks are just data permutations, such as

busses, multiplexers, and addressing logic.

This report also proposes a way to use Fully Depleted Silicon on Insulator (FDSOI) transistors to eliminate

half the transistors from some stages.

Overview
This report builds on the quantum computer control system described in ref. 5, resulting in the enhanced

system illustrated in fig. 1. To minimize the refrigeration load from high-power signals in the cryogenic

environment, fig. 1 shows waveform generators and DC power supplies in the 300 K room temperature

environment. The signals pass through the temperature gradient to a convenient temperature for in situ

electronics, such as 4 K.

2

By using the 3-phase SCRL signal demultiplexer described in this report, the number of wires going

through the temperature gradient drops from 3 dual-rail P signals + 6 dual-rail clocks (= 18 wires) to 3

single-rail P signals + 4 clocks + 3 DC supplies (= 10 wires). The demultiplexer has features that move key

sources of heat to the waveform generators, an optimization that is important for cryogenic operation.

The cryogenic environment is expected to contain a semiconductor control chip and a qubit chip, which

may be layered on top of each other as in ref. 5, side-by-side, or in some other arrangement.

This report describes the control chip as including the signal demultiplexer and control electronics, the

function of the latter described in ref. 5. This report describes control electronics that may include

transistors with tailored or dynamically changeable threshold voltages. The latter is a property of FDSOI

transistors. The reminder of the semiconductor chip may contain 2LAL or SCRL circuits, with this report

describing circuit enhancements for inversion and permutation networks.

Baseline 2LAL
Fully pipelined (shift register) 2LAL is defined for four non-overlapping clocks, as illustrated in fig. 2a. Each

clock must be available in true and complement form. However, the complement of each of these clocks

is another one of the clocks, so no additional signals are needed.

Signal

demultiplexer

300 K

4 K

Waveform

generators

3×P

12×

×DC

4×

DC

Supply

Enhanced SCRL

FDSOI

Superconductors and Qubits

Fig. 1. System overview. Room temperature

signal generators drive a signal

demultiplexer and enhanced cryogenic

adiabatic transistor circuits. Objective is to

drive qubits on a lower layer.

mK

3

The original transmission gate, or T-gate, shift register is illustrated in fig. 3a and fig. 3d, which moves

data streams a and b left-to-right. Each wire represents a dual-rail signal and each rectangle represents a

pair of T-gates. Each T-gate in turn comprises an nFET and a pFET. Frank found that by tapping bits in data

streams a and b, fig. 3b constructs a new data steam c where each bit ck = ak | bk is computed by the red

circuitry; likewise fig. 3c constructs stream d where dk = ak ^ bk using the blue circuitry, where | and ^ are

the logical OR and AND operators. New streams c and d must be decomputed at some point to avoid

excessive power dissipation, which is shown on the right of fig. 3b and fig. 3c.

Fig. 2. 2LAL requires four non-overlapping
clocks, but they don’t need to be perfectly

symmetric. For this report, the flat top of 1 is

extended on either end, yielding 1S (slow) and

1F (fast). The resulting clock will drive all

existing 2LAL circuits, albeit somewhat more

slowly.


1


0


3


2


1S


0


3


2


1F

(a) 2LAL (b) Enhanced

clocking

4

In addition to logical AND and OR, Frank’s approach can generate any AND-OR tree. However, 2LAL, by

Frank’s strict definition, cannot invert signals and hence is not a form of universal logic. If two logically

complementary copies of a 2LAL logic network are created, and all external input during operation

involves delivering complementary values to corresponding gates on the two networks, swapping

corresponding bits between the two logic networks has the same effect as inversion. This is an effective

approach for making the logic universal but has the disadvantage of doubling the number of circuit

elements.

Fig. 3. (a) A and (d) Decomputing a signal, or generating a new signal propagating to the left, or backwards in time.

-

d

1



1

S

-

d

2

-

d

1

-

d

2

-

d

1

-

d

2

-

d

1

-

d

2

(b) Generate and

decompute

signal c = a | b

(a) Signal a

etc.

(c) Generate and

decompute signal

d = a ^ b

-

d

1

-

d

2

-

d

1

-

d

2

(d) Signal b

etc.

etc.

etc.

a0
 a1

 a2
 a3

 a0
 a1

b0
 b1

 b2
 b3

 b4
 b5

c1
 c2

 c3

d1
 d2

 d3

0
 1

 2
 3

 0
 1

 2

0
 1

 2
 3

 0
 1

 3

1
 2

 3

2
 3

 0

1
 1

 2
 3

 0

1
 2

 3
 0

 1

0
 1

 2
 3

 0
 1

 3

0
 1

 2
 3

 0
 1

 2

1

1

etc.

a2

c0

b6

c1

1

0

d0

d1

5

Enhancing 2LAL
We expand the clock waveforms by adding a gap on either side of the flat top of 1 in fig. 2a, which is

equivalent to stopping all four clocks in two places. This is illustrated by the red segments in fig. 2b. Clock

1 is renamed 1S, S for slow, consistent with the terminology in ref. 4. We also add a variant of 1S called

1F, F for fast, with a pulse that fits entirely within the flat top of 1S.

Using either 1S or 1F as 1, the clocks in fig. 2b have the non-overlapping property required by fully

pipelined 2LAL and can drive existing circuits. However, the new clocking comes at a cost:

• There are six instead of four transitions per cycle, so there will be less throughput for a given

transition time—and the energy efficiency of adiabatic circuits is proportional to transition time.

• Six instead of four clock signals will be required. The complements of each of the clocks 0, 1S, 2,

and 3 is another clock in the group, so only four distinct signals are needed for these four clocks

and their complements, yet two new clock signals will be needed for 1F and its complement.

• The implementation in this report only illustrates inversion during one of the four clock phases.

Increasing the number of phases that could support inversion allow the logic family to do more

work per clock phase, but the system would slow further and require even more clocks.

Each stage in the description of 2LAL in published papers2, 3 comprises two T-gates in a diagonal

configuration, as shown in fig. 4a. To better represent the enhancements in this report, fig. 4b rearranges

the circuit so T-gates driven by the same clock phase are vertically stacked.

6

Inverter
Data signal d1 in fig. 4c shows a red DC voltage for a 0 value and a blue pulse for a 1 value. The inversion

of d1 should be a pulse if input is the red DC signal and a low DC output value if the input is a pulse. This

can be accomplished with the inverting T-gate and the 
1F

 clock in fig. 4c, as follows:

If the T-gate’s inverting input is ground, the T-gate drives the 
1F

 clock as a data signal, which is the

desired behavior.

If the T-gate’s inverting input is the d1 signal, which is the same shape as 
1S

, the T-gate’s output drive will

weaken when d1 leaves ground, becoming a reliably high impedance when the d1 signal reaches the

positive supply voltage. Inspection of the graph shows that the T-gate’s upper input will stay at ground for

the entire time the drive weakens. As a result, the T-gate blocks d1 entirely, leaving the natural circuit

capacitance to hold the output at ground, representing a 0 value. The same is true during the signal

strengthening at the end of the 
1S

 pulse. This is the desired behavior.

The red T-gates in fig. 4d illustrate the construction of a new inverted signal and two additional buffer

stages for that signal. To avoid excessive dissipation, the new signal must be uncomputed at some point,

Fig. 4. (a) The orignal publications for 2LAL use an offset geometry, which would confuse this

exposition. (b) 2LAL redrawn so T-gates with the same clock phases are stacked on top of each

other. This leads to a geometry where each stage’s interaction with others is readily apparent. (c) An
additional stage computes the logical complement of the original signal. (d) The red pass gates create

an additional data stream with the logical complement while the blue pass gates “uncompute” a

stream containing the logical complement, recovering signal energy. The red and blue structures

would not appear on the same gate (see text).


1


0


0


3

in out

(a) 2LAL per original papers (b) 2LAL redrawn for clarity

(c) Computing an inversion

d1

Out “0”

Out “1”


1F

(no drive)


1S

 
0
 

3
 

2


1S

 
0
 

3
 

2


1F


3
 

2
 

0

(d) Additional components

d1
 d0

 d3
 d2

-

d

1

-

d

2

7

which is the purpose of the blue T-gates. The red and blue T-gates are driven by the same signal in fig. 4d

for convenience of illustration, but sensible circuits would not use both the red and blue T-gates on the

same signal.

Generalization to Other Gates
Fig. 5a repeats the specific inversion logic in fig. 3d for reference, with fig. 5b extending it to an XOR gate.

Since more than the single input d1 is needed, the extension adds a second input 1 that would be created

by a replica of the shift register in fig. 3b. The generalization of fig. 5b is an and-or tree based on a charge

recovery logic (CRL)4 circuit on inputs d1, 1… that gates 
1F

 to the output. This generalization will work for

any number of inputs in principle, but scalability has not been analyzed.

Using 1S and 1F in design
The ability to invert data signals during 1 provides a practical remedy for the lack of inversion in Frank’s

AND-OR trees. For example, a memory built from strictly defined 2LAL would have to store every bit and

its complement, doubling the transistor count. This seems like a lot of overhead for a memory. However,

a single inverter at the output of the memory could complement of each bit on the fly, creating the third

and fourth rails and enabling universal logic.

Inversion during just 1 enables a general set of optimizations that a software circuit synthesizer could

use to significant advantage. Inversion that naturally occurs during 1 would be realized directly. Where

inversion is needed during 0, 2, and 3, the need for the inverted signals would be propagated

backwards until such a signal is available or could be produced. The backwards propagation is guaranteed

to stop at a previous 1. Decomputing would involve forward propagation and would stop at the next

1.

Permutation stages
Permutations stages generally apply to both SCRL and 2LAL, so they will be introduced with notation that

covers both.


1F

 d
1
 

1

Fig. 5. General gates. (a) Inverter, passing the “0”

pulse when d1 is low. (b) XOR, or CNOT when in

association with a saved signal. If d1 and 1 are both

0, the two pass gates on the left will become

conductive, passing the pulse. The pulse will also

pass if they are both 1.


1F

(a) Invert (b) XOR (CNOT)

d
1
 

1F

d
1
 XOR 

1

d
1
 

1

-

d

1

8

The diagram in fig. 6a is from ref. 7 and shows how an arbitrary function f can be realized in a reversible

SCRL pipeline, provided that the pipeline also includes f-1. The concept applies to 2LAL as well. The reader

is encouraged to consult that reference for background information. However, this structure requires

separate logic networks for compute f and f-1, doubling transistor count. Let’s see if we can do better.

Like CMOS, 2LAL and SCRL gates can be composed into higher-level logic blocks with wires. Based on the

terminology in this report, the bidirectional latches are split through the middle with the two halves

connected by single wires (SCRL) or dual-rail signals (2LAL). The splitting of the latches is illustrated in fig.

6b, which shows 3-bit signals between stages.

Wires can define the topology of the logic block, like a netlist, but the logic block could be reconfigurable

as well, like an FPGA. Fig. 6b shows functions g1 and g2 connected by a permutation p1(c), where the

signals in c control the permutation. Thus, changing c rewires the circuit.

Reconfiguration should not take place when signals are passing through the permutation network

because of the possibility of dissipation in transistors that are in the process of being turned on or off. We

discussed previously that existing 2LAL circuits will function correctly with either 1S or 1F as 1, and the

same principle applies to SCRL. To assure the permutation network is stable when data flows through it,

the permutation should be selected by signals derived from the 1S clock and data passing through the

network must be generated from the 1F clock. This is illustrated in fig. 6b.

The routing function p1(c) must be reversible, which creates concerns at several levels. The structure in

fig. 6b has been deliberately designed to pass the permutation control signals c without change, which

assures the 1S and 1F signals are separate by design. The c signals will need to be uncomputed, but this

should occur naturally as part of standard reversible circuit design. There will be no problem if p1 is truly a

g1, 1F

g1
-1, 1F

g2, 2F

g2
-1, 2F

f1, 1S

f1
-1, 1S

f2, 2S

f2
-1, 2S

c

p1(c)

di do

(a) From Frank7

(b) Permutation stage

Fig. 6. Permutation stage. Requires fast and

slow clocks, yet occurs independently of the

invertible stages in the literature.

 split buffer

 into two parts

9

permutation because backwards operation of the circuit will have the same c signal and hence the same

permutation albeit operating backwards.

If the goal is to create a reversible FPGA, the c signals would be created by the configuration logic, which

could use 1S everywhere. Of course, the FPGA design software would be obligated to create legal

reversible circuits.

However, permutation stages can implement some important standard logic functions quite efficiently:

The Fredkin gate in fig. 7 can be viewed as a control signal that either wires two signals straight through

with the blue components or swaps them with the red ones.

A 4-bit barrel shifter can be viewed as two sequential permutations, specifically a controlled rotation by

one place followed by a controlled rotation of two places. The four combinations of the two controls can

be viewed as a 2-bit binary number representing the number of places to rotate. Fig. 8 shows such a

circuit. Each of the smaller blocks is a two-input multiplexer controlled by one of the two bits of shift

count c, where a zero on the control bit enables the straight-through blue path and a one on the control

b1
 a2

Fig. 7. Fredkin gate. Permutation control from 1S; bits to swap from 1F. If c input is 0, blue path conveys a and b

straight through. If c input is 1, red path swaps a and b.

-

d

1



1

S

-

d

2

-

d

1

-

d

1

-

d

2

-

d

1

(b) Signal a

(a) Signal c

etc.

(c) Signal b

c0
 c1

0

3

2
 0

0
 0

1F

0

1F

0
 1S

 3

0
 1S

 2

1F

2

c2

1F

a0

b0

a1
 a2

10

bit enables the red diagonal path. The wiring pattern in the first crossover region shifts each bit down one

position (with wrap around) and the wiring pattern in second crossover region shifts two places. The gray

block structure comprises a test harness discussed in the appendix.

The circuit in fig. 8 has some novelty. It is intuitively clear that a permutation of four wires is reversible.

Furthermore, a controlled rotation will be reversible as long as the rotation doesn’t change while data is

flowing. However, a two-input multiplexer is not reversible, because one of the inputs gets lost. It’s also

obvious that fig. 8 can be scaled to any number of inputs, so fig. 8 is a template for a scalable reversible

structure made from non-reversible subcomponents.

However, p1 could be more than a permutation. For example, two input signals could be directed to a

single output signal—as long as the two input signals are guaranteed to always have the same value. As

shown in fig. 6, the permutations are in a different part of the circuit than the fs, gs, so it is possible to

build a circuit synthesis program that implements a circuit behavior as fs, gs, and ps all at once. Details on

such a synthesis program are beyond the scope of this report.

In summary, the advance here is that only one copy of the permutation’s logic circuits is required because

the signal pathways are electrically bidirectional. This is in contrast to the fs and gs, which only conduct in

one direction.

Cryogenic clock implementations
This section discusses cryogenic implementations of 3-phase SCRL4 and 2LAL2 clocks. Fig. 9 visually depicts

the clock requirements of both. Voltage ramps in the diagram are drawn with consistent slopes, allowing

eyeball-level comparison of the relative speeds of the two approaches.

c0
 (slow clock)

c1 (slow clock)

a0 (fast clock)

a1 (fast clock)

a3 (fast clock)

a2 (fast clock)

Fig. 8. 4-bit barrel shifter. The smaller outlined structures are 2-input multiplexers and

the larger ones are shifters. The result is a complex reversible module. Test harness and

initial data for the simulation in the appendix appear on the left.

1 1 1 1 1

1 1 1 1 1

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

11

As shown in fig. 9a, SCRL has six split-rail  clock waveforms with a 0 V idle level and linear ramps in

opposite directions to half the power supply voltage, later reversing the process. This yields the full

supply voltage between the two signals yet reaching the full supply voltage in half the time as 2LAL.

Fig. 10a redraws 3-phase SCRL circuit in Ref. 4 rigorously and fig. 10b illustrates the sequence of

transitions, revealing three-way symmetry with no more than one split-rail waveform making a transition

at a time. In addition, the Ps taken as a 3-bit number undergo a gray-code count sequence that divides

the timeline into six phases. This opens the possibility to a multiplexing scheme:

(a) 3-phase SCRL. ’s in blue, P’s in red.

(b) 2LAL

Fig 9. Clocks for SCRL and 2LAL can be built from ramps. While SCRL has many more clocks

than SCRL, only one split pair transitions at a time. This makes it possible to use a single pair of

ramp waveforms from room temperature for , tying all clocks to a DC value when not undergoing

transition. SCRL’s Ps can have a faster ramp in a cryogenic environment without excessive power

dissipation because the external wires only drive transistor gates. Furthermore, the Ps can be used

as time dividers, leading to three or six (for dual rail) additional wires. The SCRL ramps only

transit half the supply voltage whereas 2LAL ramps transit all of it. Thus, for the same slope, each

SCRL ramp takes half the time. The diagram is a helpful heuristic of the sequence of ramps, which

would be applied to different clocks. SCRL is still slower, but not as much as might be expected

from a first glance.

12

The split-rail s can be generated by a pair of externally generated waveforms and a switching network in

the cryogenic environment to route the waveform to the proper internal clock wire. The ideal solution

would allow each internal clock wire to be connected to one of two DC voltages when not undergoing a

ramp.

It makes a big difference in a cryogenic implementation whether heat is dissipated in the refrigerated

environment or at room temperature. The blue lines at 45 in fig. 9a are all standard clock-power signals

that will lead to dissipation in the cryogenic environment. However, the red P signals are generated at

room temperature and terminate on transistor gates in the cryogenic environment, creating an almost

purely capacitive load. While increasing the ramp rate of the P signals will increase dissipation, almost all

of that dissipation will be in the signal generator that is at room temperature where it is not subject to

cooling overhead. This allows optimizing SCRL throughput versus energy efficiency by increasing the ramp

rate of the P signals.

Fig. 11 is a possible implementation of a 10-transistor clock demultiplexer. Based on the P signals, the

circuit routes a clock waveform designated k or the DC values V/2 or GND to the output at the bottom.

The other clocks can be generated by rotating the P signals, applying suitable k signals, and flipping the

sign of the signal designated V/2.


1
 

2


6
 

5

P
1
 P

2

-P
1
 -P

3


3
 

1


5
 

4

P
3
 P

1

-P
3
 -P

2


2
 

3


4
 

6

P
2
 P

3

-P
2
 -P

1

P1  101 1 on 5 on P3  001 3 off 4 off

P2  011 2 on 6 on P1  010 1 off 5 off

P3  110 3 on 4 on P2  100 2 off 6 off

P2  011

P3  110

P1  101

(a) Circuit in consistent notation

(b) Timing diagram, read left-to-right, top-to-bottom

Fig. 10. Three-phase SCRL (a) circuit design from Ref. 5 in consistent notation. (b)

Timing sequence. The P values taken as a 3-bit number are shown in gray.

13

Fig. 9 conveys semi-quantitative information about the relative clock rate of SCRL and 2LAL. An SCRL cycle

comprises 12  ramps of V/2 plus 6 P ramps of a steeper slope. In comparison, a 2LAL cycle has 4  ramps

of V, which is equivalent to 8  ramps of V/2. This makes SCRL 33% slower by due to s and slower still

due to Ps. While this section explains important issues related to the length of a clock cycle, the amount

of work accomplished per clock cycle varies between approaches, so the clock period is not the only

consideration.

nFET-only Stages
The 2LAL adiabatic logic family2, 4 is remarkably energy efficient but uses more transistors per equivalent

function than CMOS. The larger transistor count is due in part to 2LAL’s exclusive use of two-transistor T-

gates.

This section describes a way to replace some T-gates by single transistors, albeit transistors with tailored

(non-standard) or adjustable threshold voltages. Adjustable threshold voltages are a feature of Fully

Depleted Silicon on Insulator (FD-SOI) processes.

The idea is to tune the clock voltages and devices on a per-stage basis, leading to the two scenarios in fig.

12, specifically with one nFET stage and with two. An nFET-only stage has half as many transistors as a

normal stage, which is its advantage. In a shift register with the same number of T-gates in every stage,

the two scenarios save 12.5% and 25% of overall device count for that circuit—which is not very much.

Fig. 11. SCRL 3 signal demultiplexer.

Signal generators at 300 K apply a gray code

count sequence to P1..3. The code selects a

ramp waveform  or one of two DC voltages

V or GND. All the necessary signals can be

generated with two waveforms, voltages,

and three rotating permutations of P1..3. The

circuit’s energy efficiency is due to (a) fast

ramping voltages from 300 K are applied

only to transistor gates and (b) voltages that

go through transistor channels have slow

ramps.

P1
 P2

 P3
 k

 V/2 GND

300 K

4K

SCRL 

14

However, most logic is designed with a relatively large amount of combinational logic sandwiched

between register stages. If standard logic design is applied to 2LAL and the nFET-only stages are used for

the combinational logic, the overall device count savings could be much larger than 25%.

Deleting all the pFETs in a 2LAL stage, or clock phase, will shift voltages generated by the stage downward

and reduce their range. Each 2LAL phase k = 0..3 connects only to phases ahead and behind, specifically

(k+1) mod 4 and (k-1) mod 4. The normal 2LAL stages on each side can compensate for the shifted

voltages by their natural ability to increase signal range. This report will quantify the voltage shifts.

The voltage shift and range reduction is caused by the voltage required to turn a transistor on, Von, being

larger than the voltage that leaves it off, Voff, which is strongly related to threshold voltages and

subthreshold slope.

As will be quantified later, nFET-only stages need large-magnitude negative thresholds for pFETs and

small-magnitude positive thresholds for the nFETs. While this could be achieved by tailoring

(reengineering) a CMOS process, doing so would have undesirably high up-front costs. However, recent

Fully Depleted Silicon on Insulator (FD-SOI) transistors have a fourth terminal connected to a thin Buried

Oxide (BOX). This substrate bias terminal VB(V) alters the threshold voltage Vth(V) as illustrated in fig. 13.

The circuit design strategy would be to bias the pFETs negatively and nFETs positively, yielding a

threshold voltage spread of about 0.3 V (in magnitude; the sign of nFET and pFET thresholds are opposite

in this case).

Normal

increases range

(k-1) mod 4 (k+2) mod 4 (k+1) mod 4

nFET only

shifts down

Normal

increases range

Normal

increases range

Normal

increases range

nFET only

shifts down

Normal

increases range

nFET only

shifts down

Fig. 12. The approach in this report deletes the pFETs from the pass gates

associated with clock phase k, yielding an nFET-only stage. The alternative in

(b) also deletes pFETs from stage k+2. nFET-only stages shift voltages,

requiring adjustments to clocks

(a) One nFET-only phase:

(b) Two nFET-only phases:

k

15

Cryogenic operation is also important to the utility of this idea. Cryogenic operation reduces subthreshold

slope by more than a factor of 2 (for 4 K operation) and 10 (for 100 mK), reducing the difference between

Von and Voff and the amount of threshold variance required.

Circuit analysis
Two-transistor T-gates are necessary to drive the standard 2LAL waveforms to full amplitude, but let’s

consider circuit changes that will make the pFETs in phases 1 and 3 unnecessary. We will find the

allowable voltage ranges for the clock waveforms algebraically, specifically finding one range for 1 and

another range for 0 and 2. Given these clock ranges, we solve for transistor parameters VP
on, VP

off, VN
on,

and VN
off algebraically, where P and N represent pFET and nFET, and where the parameters represent the

gate voltage that turns the transistors fully on and fully off. Note that VP’s are negative by convention.

Fig. 14a shows the minimum data swing for clock phase voltage 1, a stage with full T-gates. With Dk
H and

Dk
L being the high and low voltages of k and hence data signal k, D1

H – D1
L must be large enough that

both the nFET and pFET are fully turned on at the middle of the ramp, which requires a voltage range of

VN
on – VP

on.

If the pFETs are removed from the phase 1 T-gates, turning them into single nFETs, the 
1
 voltage levels

must be shifted and reduced in magnitude as illustrated in fig. 14b. If d0 = 1 and the 
1
 waveform were to

rise above D0
H – VN

on, the single nFET would not be fully turned on and unable to drive the d1 waveform as

required for full operating speed. If d0 = 0 and the 
1
 waveform falls below D0

L – VN
off, the nFET will not be

fully turned off, allowing the system to leak current backwards and create increased power dissipation.

Thus, a phase with pFETs removed must be followed by a stage with clock range reduced by VN
on – VN

off,

or shifted by the negative of that value VN
off – VN

on, and the DC value of the waveform shifted by (VN
off –

VN
on)/2.

Fig. 13. From http://soiconsortium.eu/wp-

content/uploads/2017/08/AnalogRF_28FDSOI_A

Cathelin_19092017.pdf

http://soiconsortium.eu/wp-content/uploads/2017/08/AnalogRF_28FDSOI_ACathelin_19092017.pdf
http://soiconsortium.eu/wp-content/uploads/2017/08/AnalogRF_28FDSOI_ACathelin_19092017.pdf
http://soiconsortium.eu/wp-content/uploads/2017/08/AnalogRF_28FDSOI_ACathelin_19092017.pdf

16

Fig. 14c shows it is possible for a phase with full T-gates to increase the range of the data signal. If d1 = 1,


2
 may rise as much as –VP

off above D1
H before the pFET is no longer fully turned off. Likewise, for d1 = 0,


2
 may drop to as much as VN

off below D1
L. Thus the stage allows the range to increase by VN

off – VP
off.

Thus, the condition for precisely restoring signal swing is VP
off = –VN

on – 2VN
off, but Vp

off is negative, so a

more convenient expression is |VP
off| > VN

on + 2VN
off, supporting the point made previously that the pFETs

(a) Minimum waveform amplitude:

D1
H

D1
L

D1
H – D1

L > VN
on – VP

on

R (1) = VN
on – VP

on

Minimum input swing to be

fully on at midpoint of ramp:

d1

on

(d) Amplification scenario:

D2
H = D0

H
 – VN

on +VP
off

D2
L = D0

L – VN
off – VN

off

(b) Amplification with nFET-only clock gates:

D0
H

D0
L

1

1

D1
H = D0

H
 – VN

on

D1
L = D0

L – VN
off

d0
 Highest 1 can drive output

Lowest 1 can drive output

off

on D1
H

D1
L

(c) Amplification with full pass gates:

D1
H

D1
L

2

2

D2
H = D1

H
 – VP

off

D2
L = D1

L + VN
off

d1

Range(2) – Range(1) = VN
off – VP

off

Highest 2 can drive output

Lowest 2 can drive output

off

off

D2
H

D2
L

Zero shift: VP
off = –VN

on – 2VN
off

VN
on = –VP

off
VN

off = 0

Fig. 14. Let Dk
L and Dk

H be the low and high levels of the clock and data at stage k, k

and dk. Transistors will be fully conducting with gate voltages VN
on and VP

on and fully off

with gate voltages VN
off and VP

off. (a) The minimum drive amplitude must be enough to

turn on both transistors, which occurs at the middle of the ramp. (b) If clock gating is

only nFETs, the clock (1) may not rise closer to the input waveform than VN
on,

otherwise the transistor, expected to be on, will weaken. Likewise, if 1 drops more than

VN
off below the input waveform, the transistor, expected to be off, will leak. (c) A stage

can amplify if the clock is gated by full pass gates, with the output waveform permitted

to exceed the input by VN
off in one direction and VP

off in the other, before the gate begins

to leak in the reverse direction.

17

need a high (magnitude) threshold compared to the nFETs. The roles of nFETs and pFETs can be reversed

in principle, but nFETs tend to perform better than pFETs, making the description above more apt.

Cryogenic operation
Fig. 14d shows how the attenuation due to removing pFETs in stage 1 can be precisely offset by positive

gain in the next stage. Theoretically, in the subthreshold range, Ion/Ioff = exp(q(Von– Voff)/(kT)), which

increases exponentially as temperature drops. In a recent study,6 subthreshold slope of a 40 nm CMOS

process steepened from 88.2 to 27.7 mV/decade as temperature dropped from 300 K to 4 K, allowing a

3.2× reduction in VN
on– VN

off for the same Ion/Ioff ratio. The previous figures were for a device with a Vt of

about 0.5 V. The exact relationship between Vt and VN
on and VN

off is beyond the scope of this report, but a

107 Ion/Ioff ratio would correspond to about a 200 mV change in gate voltage, so plausible values are Von =

0.5 V and Voff = 0 V. Applying the example in this report to this situation yields the example values in fig.

14d, showing a net gain of about 1.07×.

The same study6 reported the subthreshold slope of a 160 nm CMOS process steepened from 87 to 9.9

mV/decade from 300 K to 100 mK, an 8.7× reduction. Vt was measured at 0.55 V. The 107 Ion/Ioff ratio

would correspond to about a 70 mV change in gate voltage, so plausible values are Von = 0.5 V. Applying

the example in this report to this situation yields a net gain of about 1.76×. (Alternate: Von = 0.45 V and

Voff = 0.38 V. Applying the example in this report to this situation yields a net gain of about 1.71×.)

Conclusions
This report supplements ref. 5 by providing additional detail and ideas on the use of cryogenic adiabatic

transistor circuits for quantum computer control systems.

The ideas in this report extend both T-Gate shift registers1/2LAL2, 3 and SCRL. The advantage of 2LAL is

simplicity, but 2LAL circuits are not statically stable. This means that some data is defined by the voltage

on a capacitor, which can leak—especially at the low frequencies characteristic of quantum computer

control electronics. While 3-phase SCRL has more gates and clocks, all data is part of an active dual-

inverter feedback loop at all times.

To build a quantum computer control system, the designer would first choose either 2LAL or SCRL. The

methods in ref. 5 and this report explain how to implement a system that intelligently places some

components at room temperature and other at a cryogenic temperature in order to maximize energy

efficiency and minimize the amount of connection wire across the temperature gradient.

Acknowledgement
Mike Frank’s thesis, papers, and presentations provide an unusually broad perspective on adiabatic and

reversible logic and its context in computing. While most authors have a favorite circuit, Mike’s thesis

used SCRL, his attention shifted to 2LAL after he graduated, and (while not referenced in this report) he is

now working on reversible superconductive electronics. Thus, if you hang around Mike long enough, you

end up seeing these technologies as a continuum of circuits, materials, and operating temperatures.

Mike’s broader view inspired some of the ideas in this document.

References
[1] Athas, William C. "Energy-recovery CMOS." Low Power Design Methodologies. Springer, Boston, MA, 1996. 65-100.

[2] V. Anantharam, M. He, K. Natarajan, H. Xie, and M. P. Frank. “Driving fully-adiabatic logic circuits using custom high-Q MEMS
resonators,” in Proc. Int. Conf. Embedded Systems and Applications and Proc. Int. Conf VLSI (ESA/VLSI). Las Vegas, NV, pp. 5-11.

18

[3] Zulehner, Alwin, Michael P. Frank, and Robert Wille. "Design automation for adiabatic circuits." Proceedings of the 24th Asia and South
Pacific Design Automation Conference. ACM, 2019.

[4] Saed G. Younis. Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic. No. AI-TR-1500. Massachusetts
Institute of Technology Artificial Intelligence Laboratory, 1994.

[5] E. DeBenedictis, New Design Principles for Cold, Scalable Electronics. Technical report EPD001, http://www.zettaflops.org/CATC/.

[6] Incandela, Rosario M., et al. "Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures."
IEEE Journal of the Electron Devices Society 6 (2018): 996-1006

[7] Frank, Michael Patrick, and Thomas F. Knight Jr. Reversibility for efficient computing. Diss. Massachusetts Institute of Technology, Dept.
of Electrical Engineering and Computer Science, 1999..

http://www.zettaflops.org/CATC/

19

Appendix: ngspice simulation of barrel shifter
While this report is not intended to represent the results of a research project, to assist reproducibility,

this appendix includes code for ngspice simulation code that demonstrates the 4-bit barrel shifter in fig. 8

with the test harness and with 2LAL enhanced clocking from fig. 2b.

Fig. 15 shows the output from running the included code. The circuit is a five-stage, six-bit wide shift

register with a barrel shifter in the last stage. The six-bit word width comprises a two-bit rotation count

and a four-bit data word, as illustrated in fig. 8. Four of the five stages are loaded with the binary codes

0001, 0010, 0100, and 1000. The fifth state is all 1s, and corresponds to the red overlay markings in fig.

15. The binary codes rotate one position every five cycles. This is apparent by the black overlay arrows in

fig. 15: the first bit after the red line moves up one position, and then jumps to the bottom.

The source code appears below for reference. ngspice can run from single control file, so readers should

be able to cut and paste the text below and run it under ngspice v. 30.

 2LALINVERTER

*** SUBCIRCUIT DEFINITIONS

.SUBCKT PASS D GT GC S psub nsub // Pass gate. Args: Drain GateT/C Source psub nsub

M1 D GT S nsub n1 W=.18u L=0.09u

M2 D GC S psub p1 W=.18u L=0.09u

.ENDS PASS

.SUBCKT PHASE iiT iiC ooT ooC p0T p0C p1T p1C psub nsub // One phase of the 2LAL shift register. Args: iiT/C ooT/C clock0T/C clock1T/C

X1 iiT ooT ooC p0T psub nsub PASS

X2 iiC ooT ooC p0C psub nsub PASS

X3 ooT iiT iiC p1T psub nsub PASS

X4 ooC iiT iiC p1C psub nsub PASS

C1 iiT 0 5e-12

C2 iiC 0 5e-12

.ENDS PHASE

.SUBCKT DELAY d0T d0C d4T d4C // Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ ini=0

.ic V(d0T)={gg} V(d1T) = {gg} V(d2T) = { ini} V(d3T) = { ini}

Fig. 15. Spice simulation of barrel rotator. Each gray line represents the

start of a cycle. The pulse that starts each cycle moves down three traces

(mod 4), which is actually up one trace. Bottom trace is a clock.

20

.ic V(d0C)={vv} V(d1C) = {vv} V(d2C) = {vv-ini} V(d3C) = {vv-ini}

X1 d0T d0C d1T d1C P0T P0C P1Tf P1Cf psub nsub PHASE

X2 d1T d1C d2T d2C P1Tf P1Cf p2T p2C psub nsub PHASE

X3 d2T d2C d3T d3C p2T p2C p3T p3C psub nsub PHASE

X4 d3T d3C d4T d4C p3T p3C P0T P0C psub nsub PHASE

.ENDS DELAY

.SUBCKT DELAY1 d0T d0C d1T d1C x1T x1C d4T d4C // Four phases that delay, but tapping phase 1. Args: 4*{ data<n>T/C }

+ p0T p0C p1T p1C p2T p2C p3T p3C psub nsub // clocks/power supplies. Includes either phase 1 slow or fast, but not both

+ ini=0

.ic V(d0T)={gg} V(x1T) = {gg} V(d2T) = { ini} V(d3T) = { ini}

.ic V(d0C)={vv} V(x1C) = {vv} V(d2C) = {vv-ini} V(d3C) = {vv-ini}

X1 d0T d0C d1T d1C P0T P0C P1T P1C psub nsub PHASE

X2 x1T x1C d2T d2C P1T P1C p2T p2C psub nsub PHASE

X3 d2T d2C d3T d3C p2T p2C p3T p3C psub nsub PHASE

X4 d3T d3C d4T d4C p3T p3C P0T P0C psub nsub PHASE

.ENDS DELAY1

.SUBCKT MUX2 a1T a1C b1T b1C c1T c1C x1T x1C psub nsub // One input, three bidirectional, T/C. Args: addrT/C in<0..1>T/C outT/C

X1 c1T a1T a1C x1T psub nsub PASS

X2 c1C a1T a1C x1C psub nsub PASS

X3 b1T a1C a1T x1T psub nsub PASS

X4 b1C a1C a1T x1C psub nsub PASS

.ENDS

.SUBCKT FREDKIN a0T a0C b0T b0C c0T c0C // Three inputs, T/C. Args: 5*{ data<n>T/C }

+ a4T a4C b4T b4C c4T c4C // Three outputs, T/C; first two delayed copies of arguments, third is a specified function of the first two

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ inia=0 inib=0 inic=0

X1 a0T a0C a1T a1C a1T a1C a4T a4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1 ini=inia

X2 b0T b0C b1T b1C x1T x1C b4T b4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inib

X3 c0T c0C c1T c1C y1T y1C c4T c4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inic

X4 a1T a1C b1T b1C c1T c1C x1T x1C psub nsub MUX2

X5 a1T a1C c1T c1C b1T b1C y1T y1C psub nsub MUX2

.ENDS FREDKIN

.SUBCKT ROT3 a0T a0C b0T b0C c0T c0C d0T d0C // Three inputs, T/C. Args: 5*{ data<n>T/C }

+ a4T a4C b4T b4C c4T c4C d4T d4C // Three outputs, T/C; first two delayed copies of arguments, third is a specified function of the first two

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ inia=0 inib=0 inic=0 inid=0

X1 a0T a0C a1T a1C a1T a1C a4T a4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1 ini=inia

X2 b0T b0C b1T b1C x1T x1C b4T b4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inib

X3 c0T c0C c1T c1C y1T y1C c4T c4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inic

X4 d0T d0C d1T d1C z1T z1C d4T d4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inid

X5 a1T a1C b1T b1C c1T c1C x1T x1C psub nsub MUX2

X6 a1T a1C c1T c1C d1T d1C y1T y1C psub nsub MUX2

X7 a1T a1C d1T d1C b1T b1C z1T z1C psub nsub MUX2

.ENDS ROT3

.SUBCKT ROT4 a0T a0C b0T b0C c0T c0C d0T d0C e0T e0C // Three inputs, T/C. Args: 5*{ data<n>T/C }

+ a4T a4C b4T b4C c4T c4C d4T d4C e4T e4C// Three outputs, T/C; first two delayed copies of arguments, third is a specified function of the first two

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ inia=0 inib=0 inic=0 inid=0 inie=0

X1 a0T a0C a1T a1C a1T a1C a4T a4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1 ini=inia

X2 b0T b0C b1T b1C w1T w1C b4T b4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inib

X3 c0T c0C c1T c1C x1T x1C c4T c4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inic

X4 d0T d0C d1T d1C y1T y1C d4T d4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inid

X5 e0T e0C e1T e1C z1T z1C e4T e4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inie

X6 a1T a1C b1T b1C c1T c1C w1T w1C psub nsub MUX2

X7 a1T a1C c1T c1C d1T d1C x1T x1C psub nsub MUX2

X8 a1T a1C d1T d1C e1T e1C y1T y1C psub nsub MUX2

X9 a1T a1C e1T e1C b1T b1C z1T z1C psub nsub MUX2

.ENDS ROT4

.SUBCKT ROT2x4 i0T i0C j0T j0C // Args: Two address inputs, i0, j0, T/C.

+ a0T a0C b0T b0C c0T c0C d0T d0C // Four inputs, a0, b0, c0, d0, T/C.

+ i4T i4C j4T j4C // Two address outputs, i4, j4, T/C, copies of inputs

+ a4T a4C b4T b4C c4T c4C d4T d4C // Four outputs, a4, b4, c4, d4, T/C; circular rotation of inputs

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ inii=0 inij=0 inia=0 inib=0 inic=0 inid=0

X1 i0T i0C i1T i1C i1T i1C i4T i4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1 ini=inii

X2 j0T j0C j1T j1C j1T j1C j4T j4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1 ini=inij

X3 a0T a0C a1T a1C w1T w1C a4T a4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inia

X4 b0T b0C b1T b1C x1T x1C b4T b4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inib

X5 c0T c0C c1T c1C y1T y1C c4T c4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inic

X6 d0T d0C d1T d1C z1T z1C d4T d4C p0T p0C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY1 ini=inid

X7 i1T i1C a1T a1C b1T b1C q1T q1C psub nsub MUX2

X8 i1T i1C b1T b1C c1T c1C r1T r1C psub nsub MUX2

X9 i1T i1C c1T c1C d1T d1C s1T s1C psub nsub MUX2

X10 i1T i1C d1T d1C a1T a1C t1T t1C psub nsub MUX2

X11 j1T j1C q1T q1C s1T s1C w1T w1C psub nsub MUX2

X12 j1T j1C r1T r1C t1T t1C x1T x1C psub nsub MUX2

X13 j1T j1C s1T s1C q1T q1C y1T y1C psub nsub MUX2

X14 j1T j1C t1T t1C r1T r1C z1T z1C psub nsub MUX2

.ENDS ROT2x4

.SUBCKT f_XOR a1T a1C b1T b1C O1T O1C p1Tf p1Cf // Core XOR circuit. Args: 4*{ data<n>T/C }

+ psub nsub

.ic V(O1T)={gg} // f_ functions are deasserted at initialization

.ic V(O1C)={vv}

X1 q1T a1T a1C p1Tf psub nsub PASS

X2 q1C a1T a1C p1Cf psub nsub PASS

X3 O1T b1C b1T q1T psub nsub PASS

X4 O1C b1C b1T q1C psub nsub PASS

X5 z1T a1C a1T p1Tf psub nsub PASS

X6 z1C a1C a1T p1Cf psub nsub PASS

X7 O1T b1T b1C z1T psub nsub PASS

X8 O1C b1T b1C z1C psub nsub PASS

C1 O1T 0 5e-12

C2 O1C 0 5e-12

.ENDS f_XOR

.SUBCKT f_XNOR a1T a1C b1T b1C O1T O1C p1Tf p1Cf // Core XNOR circuit. Args: 4*{ data<n>T/C }

+ psub nsub

.ic V(O1T)={gg} // f_ functions are deasserted at initialization

.ic V(O1C)={vv}

X1 q1T a1C a1T p1Tf psub nsub PASS

X2 q1C a1C a1T p1Cf psub nsub PASS

X3 O1T b1C b1T q1T psub nsub PASS

X4 O1C b1C b1T q1C psub nsub PASS

X5 z1T a1T a1C p1Tf psub nsub PASS

X6 z1C a1T a1C p1Cf psub nsub PASS

X7 O1T b1T b1C z1T psub nsub PASS

X8 O1C b1T b1C z1C psub nsub PASS

21

C1 O1T 0 5e-12

C2 O1C 0 5e-12

.ENDS f_XNOR

.SUBCKT f_AND a1T a1C b1T b1C O1T O1C p1Tf p1Cf // Core AND circuit. Args: 4*{ data<n>T/C }

+ psub nsub

.ic V(O1T)={gg} // f_ functions are deasserted at initialization

.ic V(O1C)={vv}

X1 q1T a1T a1C p1Tf psub nsub PASS

X2 q1C a1T a1C p1Cf psub nsub PASS

X3 O1T b1T b1C q1T psub nsub PASS

X4 O1C b1T b1C q1C psub nsub PASS

C1 O1T 0 5e-12

C2 O1C 0 5e-12

.ENDS f_AND

.SUBCKT f_OR a1T a1C b1T b1C O1T O1C p1Tf p1Cf // Core OR circuit. Args: 4*{ data<n>T/C }

+ psub nsub

.ic V(O1T)={gg} // f_ functions are deasserted at initialization

.ic V(O1C)={vv}

X1 O1T a1T a1C p1Tf psub nsub PASS

X2 O1C a1T a1C p1Cf psub nsub PASS

X3 O1T b1T b1C p1Tf psub nsub PASS

X4 O1C b1T b1C p1Cf psub nsub PASS

C1 O1T 0 5e-12

C2 O1C 0 5e-12

.ENDS f_OR

.SUBCKT FUNC a0T a0C b0T b0C // Two inputs, T/C. Args: 5*{ data<n>T/C }

+ a4T a4C b4T b4C FnT FnC // Three outputs, T/C; first two delayed copies of arguments, third is a specified function of the first two

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ ini=0

.ic V(i1T) = {gg} V(x2T) = { ini} V(x3T) = { ini}

.ic V(i1C) = {vv} V(x2C) = {vv-ini} V(x3C) = {vv-ini}

X1 a0T a0C d1T d1C d1T d1C a4T a4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1 ini=ini

X2 b0T b0C b1T b1C b1T b1C b4T b4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1 ini=ini

X3 d1T d1C b1T b1C i1T i1C p1Tf p1Cf psub nsub f_XNOR // *** Enter circuit for desired function

X4 i1T i1C x2T x2C p1Tf p1Cf p2T p2C psub nsub PHASE

X5 x2T x2C x3T x3C p2T p2C p3T p3C psub nsub PHASE

X6 x3T x3C FnT FnC p3T p3C p0T p0C psub nsub PHASE

.ENDS FUNC

.SUBCKT CNUF a0T a0C b0T b0C FnT FnC // Three inputs, T/C; third is a specified function of the first two. Args: 5*{ data<n>T/C }

+ a4T a4C b4T b4C // Two outputs, T/C; copies of first two inputs

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ ini=0

.ic V(a0T)={gg}

.ic V(a0C)={vv}

X1 a0T a0C d1T d1C d1T d1C a4T a4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1

X2 b0T b0C b1T b1C b1T b1C b4T b4C p0T p0C p1T p1C p2T p2C p3T p3C psub nsub DELAY1

X3 d1T d1C b1T b1C i1T i1C p1Tf p1Cf psub nsub f_XNOR // *** Enter circuit for desired function

X4 FnT FnC i1T i1C p0T p0C p1T p1C psub nsub PHASE

.ENDS CNUF

.SUBCKT LINEARSHIFT d0T d0C // Four full cycle delay. Args: data in/out T/C

+ e0T e0C // stuff

+ p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub // clocks/power supplies

+ ini0=0 ini1=0 ini2=0 ini3=0

X1 d0T d0C d4T d4C p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY ini=ini3

X2 d4T d4C d8T d8C p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY ini=ini2

X3 d8T d8C dCT dCC p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY ini=ini1

X4 dCT dCC e0T e0C p0T p0C p1T p1C p1Tf p1Cf p2T p2C p3T p3C psub nsub DELAY ini=ini0

.ENDS LINEARSHIFT

*** POWER

VCC 99 0 DC {vv}

VGG 98 0 DC {gg}

*** ALL INPUTS

.param gg=0V

.param vv=.8V

.param ticks=139 // number of ticks in the simulation

.param tick=1000NS // time of a tick

.param tstep=50NS // time of a simulation step, so number of steps is tick*ticks/tstep

.param ttn=18000ns // integration time for energy

*** CLOCKS -- Original 4 clock phases and inverses (total four unique signal), but with slow and fast phase 1's (total six unique signals)

vph0 10 0 DC {gg} PWL({0*tick} {gg} {1*tick} {vv} {2*tick} {vv} {3*tick} {vv} {4*tick} {gg} {5*tick} {gg} {6*tick} {gg}) r={0*tick}

vp1s 11 0 DC {gg} PWL({0*tick} {gg} {1*tick} {gg} {2*tick} {vv} {3*tick} {vv} {4*tick} {vv} {5*tick} {vv} {6*tick} {gg}) r={0*tick}

vp1f 12 0 DC {gg} PWL({0*tick} {gg} {1*tick} {gg} {2*tick} {gg} {3*tick} {vv} {4*tick} {vv} {5*tick} {gg} {6*tick} {gg}) r={0*tick}

vph2 13 0 DC {vv} PWL({0*tick} {vv} {1*tick} {gg} {2*tick} {gg} {3*tick} {gg} {4*tick} {vv} {5*tick} {vv} {6*tick} {vv}) r={0*tick}

vph3 14 0 DC {vv} PWL({0*tick} {vv} {1*tick} {vv} {2*tick} {gg} {3*tick} {gg} {4*tick} {gg} {5*tick} {gg} {6*tick} {vv}) r={0*tick}

vqh0 20 0 DC {vv} PWL({0*tick} {vv} {1*tick} {gg} {2*tick} {gg} {3*tick} {gg} {4*tick} {vv} {5*tick} {vv} {6*tick} {vv}) r={0*tick}

vq1s 21 0 DC {vv} PWL({0*tick} {vv} {1*tick} {vv} {2*tick} {gg} {3*tick} {gg} {4*tick} {gg} {5*tick} {gg} {6*tick} {vv}) r={0*tick}

vq1f 22 0 DC {vv} PWL({0*tick} {vv} {1*tick} {vv} {2*tick} {vv} {3*tick} {gg} {4*tick} {gg} {5*tick} {vv} {6*tick} {vv}) r={0*tick}

vqh2 23 0 DC {gg} PWL({0*tick} {gg} {1*tick} {vv} {2*tick} {vv} {3*tick} {vv} {4*tick} {gg} {5*tick} {gg} {6*tick} {gg}) r={0*tick}

vqh3 24 0 DC {gg} PWL({0*tick} {gg} {1*tick} {gg} {2*tick} {vv} {3*tick} {vv} {4*tick} {vv} {5*tick} {vv} {6*tick} {gg}) r={0*tick}

*** TOP-LEVEL CIRCUIT

X1 i0T i0C i1T i1C 10 20 11 21 12 22 13 23 14 24 vv gg LINEARSHIFT ini0=vv ini1=vv ini2=vv ini3=vv // 1's bit

X2 j0T j0C j1T j1C 10 20 11 21 12 22 13 23 14 24 vv gg LINEARSHIFT ini0=vv ini1=vv ini2=vv ini3=vv // 2's bit

X3 a0T a0C a1T a1C 10 20 11 21 12 22 13 23 14 24 vv gg LINEARSHIFT ini0=vv ini1=gg ini2=gg ini3=gg

X4 b0T b0C b1T b1C 10 20 11 21 12 22 13 23 14 24 vv gg LINEARSHIFT ini0=gg ini1=vv ini2=gg ini3=gg

X5 c0T c0C c1T c1C 10 20 11 21 12 22 13 23 14 24 vv gg LINEARSHIFT ini0=gg ini1=gg ini2=vv ini3=gg

X6 d0T d0C d1T d1C 10 20 11 21 12 22 13 23 14 24 vv gg LINEARSHIFT ini0=gg ini1=gg ini2=gg ini3=vv

X7 i1T i1C j1T j1C a1T a1C b1T b1C c1T c1C d1T d1C

+ i0T i0C j0T j0C a0T a0C b0T b0C c0T c0C d0T d0C

+ 10 20 11 21 12 22 13 23 14 24 vv gg ROT2x4 inii=gg inij=gg inia=vv inib=vv inic=vv inid=vv

* power and energy calculation

B4 0 16 V=I(vph0)*v(10)+I(vp1s)*v(11)+I(vp1f)*v(12)+I(vph2)*v(13)+I(vph3)*v(14)+I(vqh0)*v(20)+I(vq1s)*v(21)+I(vq1f)*v(22)+I(vqh2)*v(23)+I(vqh3)*v(24)

A1 16 17 power_tally

.model power_tally int(in_offset=0.0 gain=1.0 out_lower_limit=-1e12 out_upper_limit=1e12 limit_range=1e-9 out_ic=0.0)

.option noinit acct

.TRAN {tstep} {ticks*tick}

* use BSIM3 model with default parameters

.include ./modelcard.nmos

.include ./modelcard.pmos

.control

22

pre_set strict_errorhandling

unset ngdebug

run

* measure power consumption

meas tran Energy1us INTEG v(16) from=0 to=5us

meas tran EnergyLev INTEG v(16) 'from=5us to=ttn'

plot v(16) // plot instantaneous energy consumption

plot v(17) // plot accumulated energy dissipation

* white background

set color0=white

* black grid and text (only needed with X11, automatic with MS Win)

set color1=black

* wider grid and plot lines

set xbrushwidth=3

plot

+ v(a0T)/0.5+2.1 v(b0T)/0.5+4.1 v(c0T)/0.5+6.1 v(d0T)/0.5+8.1 // non-inverted output

+ v(10)/0.5+0.1 // phase 0 clock

.endc

.END

.

